8 research outputs found

    Basin-scale phenology and effects of climate variability on global timing of initial seaward migration of Atlantic salmon (Salmo salar)

    Get PDF
    Migrations between different habitats are key events in the lives of many organisms. Such movements involve annually recurring travel over long distances usually triggered by seasonal changes in the environment. Often, the migration is associated with travel to or from reproduction areas to regions of growth. Young anadromous Atlantic salmon (Salmo salar) emigrate from freshwater nursery areas during spring and early summer to feed and grow in the North Atlantic Ocean. The transition from the freshwater (parr') stage to the migratory stage where they descend streams and enter salt water (smolt') is characterized by morphological, physiological and behavioural changes where the timing of this parr-smolt transition is cued by photoperiod and water temperature. Environmental conditions in the freshwater habitat control the downstream migration and contribute to within- and among-river variation in migratory timing. Moreover, the timing of the freshwater emigration has likely evolved to meet environmental conditions in the ocean as these affect growth and survival of the post-smolts. Using generalized additive mixed-effects modelling, we analysed spatio-temporal variations in the dates of downstream smolt migration in 67 rivers throughout the North Atlantic during the last five decades and found that migrations were earlier in populations in the east than the west. After accounting for this spatial effect, the initiation of the downstream migration among rivers was positively associated with freshwater temperatures, up to about 10 degrees C and levelling off at higher values, and with sea-surface temperatures. Earlier migration occurred when river discharge levels were low but increasing. On average, the initiation of the smolt seaward migration has occurred 2.5days earlier per decade throughout the basin of the North Atlantic. This shift in phenology matches changes in air, river, and ocean temperatures, suggesting that Atlantic salmon emigration is responding to the current global climate changes

    An Assessment of the Effect of Rotenone on Selected Non-Target Aquatic Fauna: Reflections on Henri Lefebre, Urban Theory and the Politics of Scale

    Get PDF
    Rotenone, a naturally occurring ketone, is widely employed for the management of invasive fish species. The use of rotenone poses serious challenges to conservation practitioners due to its impacts on non-target organisms including amphibians and macroinvertebrates. Using laboratory studies, we investigated the effects of different rotenone concentrations (0,12.5, 25, 37.5, 50, 100 μg L-1) on selected invertebrate groups; Aeshnidae, Belostomatids, Decapods, Ephemeroptera, Pulmonata and zooplankton over a period of 18 hours. Based on field observations and body size, we hypothesized that Ephemeropterans and zooplankton would be more susceptible to rotenone than Decapods, Belostomatids and snails. Experimental results supported this hypothesis and mortality and behaviour effects varied considerably between taxa, ranging from no effect (crab Potamonuates sidneyi) to 100% mortality (Daphnia pulex and Paradiaptomus lamellatus). Planktonic invertebrates were particularly sensitive to rotenone even at very low concentrations. Future research should investigate the recovery time of invertebrate communities after the application of rotenone and conduct field assessments assessing the longer term effects of rotenone exposure on the population dynamics of those less sensitive organisms

    Forecasting environmental responses to restoration of rivers used as log floatways : an interdisciplinary challenge

    No full text
    Log floating in the 19th to mid 20th centuries has profoundly changed the environmental conditions in many northern river systems of the world. Regulation of flow by dams, straightening and narrowing of channels by various piers and wing dams, and homogenization of bed structure are some of the major impacts. As a result, the conditions for many riverine organisms have been altered. Removing physical constructions and returning boulders to the channels can potentially restore conditions for these organisms. Here we describe the history of log driving, review its impact on physical and biological conditions and processes, and predict the responses to restoration. Reviewing the literature on comparable restoration efforts and building upon this knowledge, using boreal Swedish rivers as an example, we address the last point. We hypothesize that restoration measures will make rivers wider and more sinuous, and provide rougher bottoms, thus improving land-water interactions and increasing the retention capacity of water, sediment, organic matter and nutrients. The geomorphic and hydraulic/hydrologic alterations are supposed to favor production, diversity, migration and reproduction of riparian and aquatic organisms. The response rates are likely to vary according to the types of processes and organisms. Some habitat components, such as beds of very large boulders and bedrock outcrops, and availability of sediment and large woody debris are believed to be extremely difficult to restore. Monitoring and evaluation at several scales are needed to test our predictions

    Population connectivity: dam migration mitigations and contemporary site fidelity in arctic char

    Get PDF
    Background: Animal feeding and spawning migrations may be limited by physical barriers and behavioral interactions. Dam constructions (e. g. hydropower) commonly include gateways for fish migrations to sustain ecological connectivity. Relative genetic impacts of fish passage devices versus natural processes (e. g. hybrid inferiority) are, however, rarely studied. We examined genetic (i.e. microsatellite) population connectivity of highly migrating lake-dwelling Arctic char (Salvelinus alpinus), introduced 20 generations ago, across and within two subalpine lakes separated by a dam with a subterranean tunnel and spill gates after 7 generations. Due to water flow regime, the time window for fish migration is highly restricted. Results: Char populations, with similar genetic structuring and diversity observed across and within lakes, were admixed across the dam with fishways during feeding. For spawning, however, statistically significant, but very low population differentiation (theta; 0.002 - 0.013) was found in nine out of ten reproductive site comparisons, reflecting interactions between extensive migration (mean first generation (F(0)) = 10.8%) and initial site fidelity. Simulations indicated that genetic drift among relatively small effective populations (mean N(e) = 62) may have caused the observed contemporary differentiation. Novel Bayesian analyses indicated mean contributions of 71% F(0) population hybrids in spawning populations, of which 76% had maternal or paternal native origin. Conclusions: Ecological connectivity between lakes separated by a dam has been retained through construction of fishways for feeding migration. Considerable survival and homing to ancestral spawning sites in hybrid progeny was documented. Population differentiation despite preceding admixture is likely caused by contemporary reduced reproductive fitness of population hybrids. The study documents the beginning stages of population divergence among spatial aggregations with recent common ancestry. Full article available at http://www.biomedcentral.com/1471-2148/11/20
    corecore