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Abstract 72 

Migrations between different habitats are key events in the lives of many organisms. Such 73 

movements involve annually recurring travel over long distances usually triggered by 74 

seasonal changes in the environment. Often, the migration is associated with travel to or from 75 

reproduction areas to regions of growth. Young anadromous Atlantic salmon (Salmo salar) 76 

emigrate from freshwater nursery areas during spring and early summer to feed and grow in 77 

the North Atlantic Ocean. The transition from the freshwater (‘parr’) stage to the migratory 78 

stage where they descend streams and enter salt water (‘smolt’) is characterized by 79 

morphological, physiological and behavioural changes where the timing of this parr-smolt 80 

transition is cued by photoperiod and water temperature. Environmental conditions in the 81 

freshwater habitat control the downstream migration and contribute to within- and among-82 

river variation in migratory timing. Moreover, the timing of the freshwater emigration has 83 

likely evolved to meet environmental conditions in the ocean as these affect growth and 84 

survival of the post-smolts. Using generalized additive mixed-effects modelling, we analysed 85 

spatio-temporal variations in the dates of downstream smolt migration in 67 rivers throughout 86 

the North Atlantic during the last five decades and found that migrations were earlier in 87 

populations in the east than the west. After accounting for this spatial effect, the initiation of 88 

the downstream migration among rivers was positively associated with freshwater 89 

temperatures, up to about 10 ºC and levelling off at higher values, and with sea-surface 90 

temperatures. Earlier migration occurred when river discharge levels were low but increasing. 91 

On average, the initiation of the smolt seaward migration has occurred 2.5 days earlier per 92 

decade throughout the basin of the North Atlantic. This shift in phenology matches changes in 93 

air, river, and ocean temperatures, suggesting that Atlantic salmon emigration is responding to 94 

the current global climate changes. 95 

96 
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Introduction 97 

Many organisms migrate between different habitats during their life cycle (Dingle, 1996). 98 

These movements may occur at different timescales and allow species to (i) take advantage of 99 

dietary or reproductive opportunities available in discrete and often distant habitats; and (ii) 100 

avoid certain habitats during periods such as winter when conditions may be intolerable. 101 

Migrations are usually triggered by seasonal changes in environmental conditions and by 102 

internal physiological processes. Habitat shifts may involve annually recurring travel over 103 

long distances, such as those undertaken by many species of birds, mammals, reptiles, fishes 104 

and insects (Dingle, 1996). 105 

In diadromous fishes, life history strategies and migratory movements between fresh 106 

water and the ocean constitute key life history events in the life cycle of these species. 107 

Atlantic salmon (Salmo salar) typically emigrate from freshwater in the spring after having 108 

reached a growth-dependent size threshold (Økland et al., 1993). Age at emigration is 1–6 109 

years and total length 12–25 cm. Once they reach the ocean, the subsequent growth is 110 

compensatory and very rapid (Hogan & Friedland, 2010). After 1–4 years at sea they return 111 

with high precision to their natal river to breed, although a small proportion strays to other 112 

rivers (Jonsson et al., 2003). 113 

Prior to the seaward migration Atlantic salmon undergo a major transformation often 114 

called smolting, which comprises morphological, physiological and behavioural changes. This 115 

allows individuals to change from the territorial and relatively sedentary juvenile (‘parr’) 116 

stage to the migratory (‘smolt’) stage, during which they move downstream and are able to 117 

enter sea water (Hoar, 1976). The parr-smolt transformation is typically associated with 118 

increasing temperatures in spring, and is regulated by photoperiod and water temperature 119 

through effects on the neuroendocrine system (McCormick et al., 1998). Controlled 120 

laboratory studies indicate that photoperiod is the dominant cue of the parr-smolt 121 
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transformation, with local temperatures playing a subordinate role (McCormick et al., 2002). 122 

Once the smolt transformation has been completed there is a short period of time during 123 

which the fish are physiologically prepared for seawater entry. Smolt that do not complete 124 

their seaward migration within this period desmolt, but may smolt again in the subsequent 125 

spring (McCormick et al., 2009). In general, smolt migration occurs in spring or early 126 

summer (Thorstad et al., 2012), and the timing of the initiation of the downstream migration 127 

differs among rivers. 128 

A number of different environmental factors may trigger the downstream migration. 129 

These factors can be river-specific such as water temperature, flow and turbidity (Jonsson & 130 

Ruud-Hansen, 1985; McCormick et al., 1998), or related to light conditions in the river 131 

(Hansen & Jonsson, 1985; Hvidsten et al., 1995). Also the presence of other migrants and 132 

predators may affect out-migration (McCormick et al., 1998).  133 

Many factors affect post-smolt survival, but the timing of the smolt migration is an 134 

important predictor of survival to adulthood (Antonsson et al., 2010). In addition to proximal 135 

conditions like river temperature, other mechanisms can also affect survival, including 136 

predators, parasites and pathogens, feeding opportunities, and temperatures in the ocean 137 

(McCormick et al., 1998; McCormick et al., 2009). Each of these factors has the potential to 138 

exert selective pressure on the migratory timing, with reduced survival associated with both 139 

too early (Kennedy & Crozier, 2010) and delayed migrations (Castro-Santos & Haro, 2003; 140 

McCormick et al., 2009). Thus, there exists a critical period of downstream migration 141 

(‘environmental smolt-window’) in which fitness is maximized by arrival at the marine 142 

environment when conditions are optimal for both survival and growth (McCormick et al., 143 

1998). These are the necessary conditions for stabilizing selection, leading to genetic and 144 

phenotypic differentiation among populations of several salmonid species (Stewart et al., 145 

2006; Spence & Hall, 2010). 146 
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In fisheries biology, the critical period concept (Cushing, 1990) postulates that survival 147 

and recruitment are maximized when there is a temporal match between a predator’s 148 

phenology and that of its prey. Climate change might, however, alter the patterns of food 149 

availability leading to a mismatch if the resource base does not react in a similar way (Durant 150 

et al., 2007). Thus, there is evidence that the timing of seasonally recurring biological events 151 

(i.e. phenology) is shifting as a result of global increases in temperature (e.g. Parmesan, 152 

2007). However, shifts in phenology appear to vary across taxa (Jonzén et al., 2006; Menzel 153 

et al., 2006; Parmesan, 2007; Kauserud et al., 2012), and at different trophic levels (e.g. 154 

Edwards & Richardson, 2004), and have important effects on population dynamics and 155 

systems ecology (Miller-Rushing et al., 2010); however, the fitness consequences may vary 156 

widely (McNamara et al., 2011). 157 

Compared with terrestrial taxa, knowledge of the relationships between the timing of 158 

environmental changes and seasonal activities in fishes is sparse (Parmesan, 2007; but see 159 

Anderson et al., 2013). Furthermore, despite being a group with numerous species, there is 160 

little knowledge of the likely impacts of climate change on the dynamics of migratory fishes 161 

(Robinson et al., 2009). In anadromous salmonids some long-term studies have provided 162 

evidence that migration from freshwater to saltwater is occurring at earlier dates during a 163 

period of environmental warming for both Atlantic (Kennedy & Crozier, 2010) and Pacific 164 

(Kovach et al., 2013) species. In any case, productivity of Atlantic salmon has been declining 165 

throughout its distribution (Jonsson & Jonsson, 2004), raising major conservation and 166 

management concerns (Dempson et al., 2004). This reduction in fish abundance may be due, 167 

in part, to an alteration in timing of life history decisions affecting later survival (Hindar et al., 168 

2011). Thus, there is a need to better understand the factors related to the initiation of global 169 

seaward migration pattern of Atlantic salmon. 170 
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In this paper we analyze large-scale variations in the timing of migration in Atlantic 171 

salmon at two migratory audit points (dates of 25 and 50% total smolt emigration) from fresh 172 

to salt water. We examine data sampled during 50 years from 1961 to 2010 from 67 North 173 

Atlantic rivers. The objective was to study the relationship between the smolt descent and 174 

environmental factors in both fresh and salt water while accounting for geographic variability. 175 

Further, we tested if there has been a global phenological shift and whether this possible shift 176 

can be linked to changes in global and local environmental conditions. 177 

 178 

Materials and Methods 179 

Study area and smolt sampling  180 

Atlantic salmon are naturally distributed throughout the basin of the North Atlantic Ocean. In 181 

the western part of its distribution, they occur from Ungava Bay, Québec, Canada in the north 182 

to the Connecticut River, USA, in the south. In the eastern part Atlantic salmon are found 183 

from Petchorskaya and the Ural mountains in Russia in the Northeast, along the coast of the 184 

European continent south to the River Miño in Spain in addition to Iceland and the British 185 

Isles (Jonsson & Jonsson, 2011). Data on timing of smolt downstream migration were 186 

obtained from 70 sites on 67 rivers covering most of this east-west and north-south gradient 187 

for the period 1961 to 2010 (Fig. 1a, Table 1). Some sites were situated close to the river 188 

mouth, others were in tributaries either close to the confluence with the main river or in the 189 

upper reaches, and others were located in the central part of the main stem of a river. Thus 190 

most sites were situated between 1.2 and 34.8 km upstream of the river mouth 191 

(Supplementary Material and Methods). Downstream migrating smolts were monitored by 192 

various methods. In most cases only a fraction of the river width was screened for smolts. 193 

However, it is assumed that the sampling schemes provide representative observations of the 194 

daily migration pattern and timing. Smolt trapping facilities were typically placed at sites 195 
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where they could be operated across as broad a spectrum of river discharges as possible. 196 

However, such traps may have reduced efficiency during flood events. In some rivers, Wolf 197 

traps (Wolf, 1951) spanned the whole width of the river. Most Wolf traps are operated 198 

continuously and independent of the discharge. However, others are located on weirs and are 199 

subjected to operational constraints related to flows. Video cameras have also been used in 200 

some rivers. Cameras were anchored to the riverbed perpendicular to the running water and 201 

enabled a sample of migrating smolts to be recorded and subsequently counted. The number 202 

of cameras used in each transect depended on river width and water turbidity. 203 

Descending smolts were usually monitored throughout the whole migration period. This 204 

extended from March to June in southern rivers and from June to August in northern systems 205 

(Table S1). The initiation of downstream migration for a given site and year was defined as 206 

the day of the year when 25% of the total smolt run had been enumerated (referred to as the 207 

onset of the smolt emigration), and the median emigration day was defined as the day of the 208 

year when 50% of the total smolt emigration had been counted. These quartiles were chosen 209 

because they are standard audit points of the smolt run in Atlantic salmon literature 210 

(Antonsson & Gudjonsson, 2002), and describe well the temporal migratory dynamics of each 211 

smolt cohort (Kennedy & Crozier, 2010).  212 

 213 

Environmental data 214 

River conditions. To test for association between time of emigration and relevant 215 

environmental conditions in freshwater we estimated the mean temperature ( T  in ºC) and the 216 

mean discharge ( Q  in m
3
 s

–1
) for the 10-day period preceding the 25% and 50% smolt 217 

descent dates. Further we estimated the relative change in discharge as the discharge-day 218 

relationship (slope,  Q ) for that period. Such levels or changes in environmental conditions 219 

may act as triggers initiating the downstream migration. Discharge in each site was highly 220 
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skewed thus it was ln-transformed before analysis. Temperature and discharge were mostly 221 

recorded using data loggers at the smolt counting station, or as close to this as possible 222 

(Supplementary Material and Methods).  223 

 224 

Sea surface temperature. Optimum Interpolation sea surface temperature 225 

(NOAA_OI_SSTV2) data available at weekly 1º latitude × 1º longitude grid resolution from a 226 

combination of satellite and in situ measurements (Reynolds et al., 2002) were obtained from 227 

the NOAA Earth System Research Laboratory (http://www.esrl.noaa.gov/psd/) for the period 228 

1982 to 2010 (Fig. 1a-c). To evaluate the potential association between downstream migration 229 

dates and sea surface temperature (SST in ºC) at sea entry we used the average SST for the 7-230 

day period preceding the date of 25% and 50% descent for those cells whose centers were 231 

located nearest to the ocean entry point of a given river. In eleven rivers where smolt 232 

sampling started before the availability of the satellite data set, SST was obtained from 233 

different sources (Supplementary Material and Methods). Sampling sites were located at 234 

various distances from the river mouth. The time (25 and 50% dates) for smolts to reach the 235 

ocean was adjusted for this variation using the distance from the sampling station to the river 236 

mouth and an average migration speed of about 32 km d
–1

 obtained from measurements 237 

recorded in various rivers (Table S2). 238 

 239 

Chlorophyll a. Phytoplankton concentration is important for defining suitable pelagic habitats 240 

and might be a surrogate for oceanic feeding conditions (e.g. Bi et al., 2007). To test if timing 241 

of sea entry is adjusted to a period of sufficient primary production, we compiled data on 242 

satellite-derived chlorophyll a concentration (8-day composites on surface concentration, 243 

Chla, in mg m
–3

) from the Sea-viewing Wide Field-of-View Sensor (SeaWiFS) at 1º latitude × 244 

1º longitude grid resolution for the period 1998 to 2010 (Fig. 1d-f). For the same SST coastal 245 

http://www.esrl.noaa.gov/psd/
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cells we used the ln-transformed (to make the distribution more symmetrical) concentration of 246 

chlorophyll a from the 8-day composite previous to the 25 and 50% downstream dates 247 

(Supplementary Material and Methods). 248 

 249 

Air temperature. Water temperature was for most rivers obtained daily during the smolt 250 

migration period and not all year round. Moreover, many rivers were sampled during a few 251 

years only; accordingly, the length of the water temperature time series was shorter than ten 252 

years in many cases. This makes it difficult to reliably estimate global trends in freshwater 253 

conditions. Thus, air temperature, which correlates with river temperature (Fig. S14) was used 254 

as a surrogate to generate a global description of the thermal environment faced by each 255 

sampled river. Therefore, we collected data on daily mean air temperatures (Table S3) using 256 

the ‘WeatherData’ function 257 

(http://reference.wolfram.com/mathematica/ref/WeatherData.html) in Mathematica 8.04 258 

(Wolfram Research, Inc., 2010) (Supplementary Material and Methods). 259 

 260 

Statistical analyses 261 

Information from 70 locations was used in the analyses; each site was sampled over multiple 262 

but not necessarily consecutive years implying repeated longitudinal measures (Table 1 and 263 

Table S1). Data were analysed by means of generalized additive mixed effects models 264 

(GAMM; Wood, 2006) that allow for non-linearity and the inclusion of both fixed and 265 

random effects such as in the following model: 266 

DoY25t ,i    f1 Tt ,i  f2 SSTt ,i  f3 Yt ,i  g loi ,lai  ai  bi  t ,i    (1) 267 

where DoY25 is the day of the year when 25% of the smolt have descended (i.e. the onset of 268 

seaward migration) in year t at site i. α is an intercept, and the fn’s and g are one- and two-269 

dimensional nonparametric smoothing functions describing the effect of  T  (river 270 

http://reference.wolfram.com/mathematica/ref/WeatherData.html
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temperature), SST (sea surface temperature), Y (year), and site location at longitude lo and 271 

latitude la. We assumed that including a function of longitude and latitude would act as a 272 

‘catch-all’ proxy for factors that vary spatially such as photoperiod and seasonal freshets. The 273 

smoothing functions were fit by penalized cubic regression splines and a thin plate regression 274 

spline with 3 and 15 knots for the one- and two-dimensional functions, respectively (Wood, 275 

2006). If any of the nonparametric relationships are essentially linear, those covariates can be 276 

modelled as parametric terms within the GAMM formulation. For instance, the relationship 277 

with SST is linear (see below), thus that term in equation 1 becomes 1  SSTt ,i  where 1  is a 278 

coefficient that describes the change in the date of emigration for a unit change in SST. ai is a 279 

random intercept allowing for variation between sites, and bi is a random slope allowing, for 280 

instance, the relationship with SST to differ by site. Random effects are assumed to be 281 

normally distributed with mean 0 and variances 
  


a

2  and 
  


b

2
. The residuals 

  


t ,i
 are a normally 282 

distributed random error with mean 0 representing the within-site variation. Given the 283 

sequential nature of the data a residual correlation structure was added to the model. An 284 

autoregressive correlation of order 1 is suitable for regular spaced data. Because our data were 285 

commonly irregularly spaced in time, we tested if including a linear spatial correlation 286 

structure (Pinheiro & Bates, 2000), that can accommodate the imbalance in time, improved 287 

the model fitting. In addition, the variance in residual dates ( 
2
) was further modelled as a 288 

function of possible covariates included in equation 1, for instance: 289 

var t ,i   2exp 2 Tt ,i          (2) 290 

where δ is a parameter to be estimated that describes the estimated change in variance with  T . 291 

This model of the residual variance was compared with other variance structures through 292 

selection criteria.   293 
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The difference between river temperature ( T ) and sea surface temperature (SST) can be 294 

related to the onset of migration (Kennedy & Crozier, 2010). Therefore we explored this 295 

potential effect running a separate model that included the thermal difference (TDif) between 296 

both environments as a covariate. Water flow records were unavailable for numerous site-year 297 

combinations (Table 1), thus substantially reducing the migration information. Therefore, 298 

discharge was not used in equation 1. It was, however, included in a separate model that 299 

contained only those sites with sufficient data. The same happened with chlorophyll a that 300 

was available only from 1998 to 2010. 301 

For any equation, model selection was performed iteratively. First, with all fixed effects 302 

included in the model, appropriate random effects and residual correlation structure were 303 

selected using the Bayesian Information Criterion (BIC) that puts a heavier penalty on models 304 

with more parameters. Model parameters were estimated by means of restricted maximum 305 

likelihood (REML). Second, the variance models were selected. Third, the optimal fixed 306 

effects were determined by means of maximum likelihood (ML) parameter estimation. 307 

Finally, with the optimal fixed structure in place the random effects were reassessed and 308 

model parameters presented were estimated by REML (Zuur et al., 2009). The same 309 

procedure was used to model the median of downstream migration (i.e. DoY50). 310 

For each river, air and sea surface temperature time series, individually average warming 311 

rates and changes in the timing of seasonal warming were computed (Supplementary Material 312 

and Methods). 313 

All analyses and treatment of data were performed with R 2.15.0 language (R 314 

Development Core Team, 2012) and using the “mgcv 1.7-13” (Wood, 2006) and “nlme 3.1-315 

103” (Pinheiro & Bates, 2000) packages. 316 

 317 

 318 
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Results 319 

Summary of smolt migration patterns 320 

Downstream migration timing varied among and within sites. The earliest onset of emigration 321 

occurred in the Tea River (Spain) where 25% descent was recorded on the 20
th

 March in 322 

2000, whereas the latest onset date was recorded on the 3
rd

 August 1995 in the Vesturdalsa 323 

River (northern Iceland) (Table S1). Collectively, the observations of time of 25 and 50% 324 

descent (river and year combinations) showed that c. 75% were within a 30-day period 325 

between the beginning of May (~day 120s) and the beginning of June (~day 150s) (Fig. 2a). 326 

In addition, the difference between the 50 and 25% emigration date occurred within a narrow 327 

time window with 75% of the observations (river and year combinations) extending over a 328 

period of less than 6 days, though a maximum difference of 27 days was recorded in 329 

Vesturdalsa River in 1998. The variability of this difference was not related to latitude (Fig. 330 

2b). However, on average, time between 50 and 25% of emigration dates appeared to be 331 

shorter when the onset of emigration occurred later (Fig. 2c). 332 

 333 

Onset of emigration 334 

Model selection favoured a random intercept indicating high variability in emigration dates 335 

from site to site, and also a random slope allowing the relationship with SST to differ by site 336 

(Table S4). Within-site residual correlation structures did not improve the model fitting (Table 337 

S4). The optimal model of the onset of emigration timing revealed a strong spatial trend 338 

showing a clear west-east and south-north gradient (Fig. 3a). The average onset of 339 

downstream migration was about the 18
th

 May (day 138) (Table 2) at 45ºN in the western 340 

Atlantic, whereas in the eastern Atlantic this date occurred approximately at 63ºN (isopleth 341 

zero in Fig. 3a). This resulted in the mean onset of emigration date in Northern Norway, 342 

Finland and Russia occurring about 90 days later than in Spain, at the southern limit of the 343 
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species distribution in Europe (Fig. 3a). After accounting for the spatial trend, river 344 

temperature ( T ) had a slight non-linear effect on the among-river onset of emigration 345 

reaching a plateau at about 10 ºC (Fig. 3b). In addition, there was evidence for changes in the 346 

spread of the onset of emigration related to  T  (Table 2 and Table S5). The estimated 347 

exponential variance parameter corresponds to a 14.9% increase in variance with a 2 ºC 348 

warming in river temperature. 349 

When the smolt migrated later the SST at the oceanic entry point was warmer (Fig. 3c). 350 

This effect resulted in an estimated average (± s.e.) increase of 2.1 ± 0.3 days in onset of 351 

emigration per 1 ºC increase in SST. Furthermore, the model also revealed a slight non-linear 352 

shift towards earlier onset of emigration timing during the last fifty years (Fig. 3d). Modelling 353 

the long-term trend as a parametric component resulted in an earlier downstream migration of, 354 

on average, 2.5 ± 0.3 days per decade, which means that, over the entire 50 years studied, the 355 

data showed an earlier onset out-migration of 12.7 ± 1.4 days. 356 

There were variability in mean emigration onset dates from site to site, and also the 357 

relationship with SST differed by site (Table 2). Furthermore, there was a positive correlation 358 

between the random effects indicating that sites that had larger intercepts (i.e. later 359 

emigration) also had larger slopes (i.e. a stronger relationship with SST) (Fig. 4). Moreover, 360 

this pattern slightly varied with geography with larger intercepts and slopes occurring at 361 

higher latitudes.  362 

Finally, residuals of the optimal model did not show any apparent heterogeneity or major 363 

departures from normality (Fig. S16-S17). The estimated random effects were also reasonably 364 

normal (Fig. S18). Moreover, there was no spatial pattern in residuals; there was no clear 365 

clustering of positive (or negative) averaged residuals per sampling site (Fig. S19).  366 

Further examination of the combined effects of temperature in both fresh- and saltwater 367 

habitats showed a nonlinear relationship between the among-river onset of migration and the 368 
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thermal difference between both environments (Table S7). This mostly revealed that when 369 

freshwater temperature was 3 ºC warmer than the ocean SST the onset of smolt emigration 370 

occurred earlier (Fig. 5). 371 

Regarding water flow, the onset of emigration occurred later at higher average discharge 372 

( Q ) (Fig. 6a). This relationship implied that a one percent increase in  Q  would result in a 373 

0.011 ± 0.003 day delay in the average onset date of emigration. Furthermore, the model also 374 

revealed a nonlinear relation between the onset date and the change in water flow ( Q ), with 375 

earlier emigration when the rate of change in discharge tended to increase (Fig. 6b). 376 

Chlorophyll a was not correlated with the onset of emigration. Running a model from 377 

1998 to 2010 (n = 443) that included surface concentrations of chlorophyll a (Fig. 1d) at the 378 

oceanic entry point as a new covariate, revealed no association (P-value > 0.1). 379 

The onset and median emigration dates were correlated (r
2
 = 0.97), thus the modelling 380 

yielded similar results (Table S9 and Fig. S22).  381 

 382 

Trends and seasonal shifts in air, river and sea surface temperature 383 

Overall, the analysis of temperature trends in rivers with at least 10 years of data revealed an 384 

increase in water temperature at an average rate (± s.e.) of 0.36 ± 0.06 ºC per decade (Fig. 7a). 385 

This warming corresponded well with air temperature records at stations close to the smolt 386 

sampling locations, for which the mean increase was 0.25 ± 0.03 ºC per decade (Fig. 7b). The 387 

SST at the ocean entry points warmed at a mean rate of 0.33 ± 0.02 ºC per decade (Fig. 7c). 388 

Furthermore, it was observed that seasonal warming (air temperature stations and the coastal 389 

cells) generally occurred earlier in the year. These shifts revealed an advance of seasonal 390 

warming in air temperatures at an average rate of 2.70 ± 0.34 days per decade (Fig. 7d), and 391 

an earlier arrival of seasonal warming in SST at an average rate of 5.02 ± 0.49 days per 392 
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decade (Fig. 7e). Finally, the among-river date of onset of emigration was related to the date 393 

of seasonal warming in air temperatures (Fig. 7f).  394 

 395 

Discussion 396 

In this work, we examined the geographical pattern of the initial timing of the downstream 397 

migration of young anadromous Atlantic salmon (smolts) throughout its natural distribution 398 

and found that timing of downstream migration varies strongly among rivers. This variation is 399 

probably a response to selection driven by prevailing regional conditions (Thorstad et al. 400 

2011), and thus we could expect large-scale patterns that reflected these spatial environmental 401 

differences. Results showed that –in addition to the latitudinal cline with southern populations 402 

migrating earlier than northern ones (Hvidsten et al., 1998)– the timing of out-migration 403 

differed strongly between the East and West Atlantic, with western populations migrating to 404 

sea at later dates than eastern populations at corresponding latitudes. 405 

What may be the selective agent leading to this geographic pattern in downstream 406 

migration? Geographical variation in timing is most probably driven by the spatial pattern of 407 

average SST (compare isotherms in Fig. 1a with isopleths in Fig. 3a). In particular there is 408 

large variation in SST between the East and West part of the Atlantic, which is the result of 409 

both the organization of atmospheric circulation forcing and oceanic current systems (Deser et 410 

al., 2010; Fig. S23). The latitudinal variation in SST is also well known. However, even if 411 

SST is the selective force leading to differences in phenology, salmon smolts cannot use it as 412 

a cue for initiating the downstream migration. A cue that might be associated with SST may 413 

be used. Consequently, the latitudinal patterns in phenology are most probably cued by the 414 

geographic variation in photoperiod (Fig. S24). Photoperiodism is widespread across multiple 415 

taxa (Bradshaw & Holzapfel, 2007), and Atlantic salmon are shown to assess and use day 416 

length to initiate the physiological changes associated with smolting. However, the response 417 
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to photoperiod may be adjusted by variation in local environmental factors such as river 418 

temperatures (McCormick et al., 2002). Long-term selection may then lead to changes in how 419 

salmon populations respond to these cues.  420 

After accounting for this geographical variation, among-river migratory patterns of 421 

Atlantic salmon were related to freshwater conditions. The onset of the smolt emigration was 422 

positively associated with river temperatures up to about 10 ºC, levelling off or potentially 423 

decreasing at higher temperatures. This result indicates that the onset of the freshwater 424 

emigration does not occur beyond a given day of the year (or temperature) despite continued 425 

temperature increase. In rivers and years with the latest onset dates the temperature at smolt 426 

descent ranged from 10 to 17 ºC, values that are close to the seasonal peak temperature for 427 

those rivers. This agrees well with previous knowledge about the secondary role of river 428 

temperature in impairment of the fishes tolerance of saltwater (McCormick et al., 2002; 429 

2009). In addition, emigration dates were more heterogeneous in rivers and years 430 

experiencing elevated temperatures, though this effect might be a result of scarce data at high 431 

temperatures. 432 

Water temperature has been already identified as a primary environmental factor cuing 433 

downstream migration (Thorstad et al., 2012). Some studies suggest that the initiation of the 434 

smolt run require passing a certain temperature threshold (e.g. 10 ºC) for wild (Antonsson & 435 

Gudjonsson, 2002) and hatchery reared smolt (Jutila et al., 2005). However, when pooling 436 

rivers across the distribution of Atlantic salmon there was no clearly defined lower 437 

temperature limit associated with the commencement of the smolt migration, and the lower 438 

thermal threshold appears river-specific (McCormick et al., 2002). At high water 439 

temperatures smolt characters (e.g. salinity tolerance) are lost sooner and quicker 440 

(McCormick et al. 2009). Consequently, it is important for the smolts to emigrate from 441 
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freshwater well before reaching very high water temperatures. Our results suggest that also 442 

the upper thermal limit is river-specific. 443 

Downstream migration timing has frequently been related to water flow (McCormick et 444 

al., 1998) showing that migration of Atlantic salmon smolts can be initiated by increased 445 

water discharge during spring freshets (Hvidsten et al., 1995) albeit this correlation may be 446 

highly variable (Jonsson & Jonsson, 2009). We found that earlier migration among rivers 447 

occurred at lower average water flow and at a higher positive change (increase) in flow. This 448 

might indicate that smaller rivers (low average flow) with an increase in the rate of change in 449 

discharge are more unstable in their hydrology and thus emptying the smolts out earlier. 450 

Alternatively, because rivers with larger discharge are usually longer some of the observed 451 

relationship could be due to longer migration distances to saltwater from multiple headwater 452 

streams. 453 

Among-river variation in downstream migration was associated with oceanic thermal 454 

conditions at the sea entry point with later migrants finding higher sea temperatures. This 455 

relationship also varied from site to site, with sites that had later emigration also had a 456 

stronger relationship with SST. Several studies have reported the thermal regime experienced 457 

by smolts during the initial marine migration. For instance, Antonsson & Gudjonsson (2002) 458 

showed that smolts leaving northern Icelandic rivers would enter seawater at 5 ºC, Hvidsten et 459 

al. (1998) reported a consistent SST of c. 8 ºC for smolts emigrating from five rivers in 460 

Norway, and Kennedy & Crozier (2010) showed that smolt in Northern Ireland would 461 

experience a thermal regime ranging from 7 to 12 ºC. Our analysis shows that among-river 462 

variation in smolt emigration was associated with a range of SST of about 0 to 15 ºC, and this 463 

further suggests that populations would be adapted to emigrate from the rivers and enter salt 464 

water at a particular and prevailing regional sea temperature. The specific sea temperature at 465 

which each population reaches the ocean environment should be consequently connected with 466 
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a specific value of photoperiod (Fig S24c), the main cue used by the salmon to initiate 467 

smolting. 468 

Year-to-year variability in the timing of the smolt run within rivers has often been related 469 

to variation in water temperature, resulting in delayed migration in cooler springs (Jonsson & 470 

Ruud-Hansen, 1985; Jensen et al., 2012). We found that the timing of migration for the whole 471 

set of rivers and years was related to the thermal difference between fresh and salt water. 472 

When temperature in fresh water was ~3 ºC warmer than in the sea outside the river mouth, 473 

the migration occurred earlier. Earlier onset of migration at an increased temperature contrast 474 

between fresh and saltwater was previously shown for the River Bush, Northern Ireland 475 

(Kennedy & Crozier, 2010). Therefore, we conclude that smolts migrate earlier in warm river 476 

years, and that river temperature influences the timing of the smolt run, but selection has 477 

regulated the fish’s ability to use photoperiod as a priming mechanism for the migration. This 478 

is consistent with laboratory studies that have shown clear physiological linkages between the 479 

photoperiod and the physiological preparation for smolting with local temperature serving a 480 

subordinate role (McCormick et al., 2002). The onset of migration, although accompanied 481 

and mediated by physiological changes, is a behavioural response. As such, priming 482 

mechanisms prepare animals for migration, and tend to be synchronized with long-term 483 

average conditions that are associated with selective drivers of migration. Releasing 484 

mechanisms are often de-coupled from these priming mechanisms, however, and allow 485 

animals to fine-tune behavioural responses to maximize their ability to take advantage of 486 

variable conditions (Dingle, 1996). Our data are consistent with this interpretation: salmon in 487 

each site would use specific day length to initiate smolting and entry the saltwater at a 488 

particular sea surface temperature. Photoperiod as a priming mechanism would tend to 489 

stabilize dates of migratory onset, but local temperatures and flow would be responsible for 490 

annual variation. 491 
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Time of ocean entry of Atlantic salmon influences post-smolt survival (Hansen & 492 

Jonsson, 1989; Antonsson et al., 2010) as has also been shown for several Pacific salmon 493 

species (Scheuerell et al., 2009). Therefore, natural selection would favour migration at a time 494 

when conditions are favourable (Hansen & Jonsson, 1989; Hansen & Jonsson, 1991). During 495 

this time window the ionoregulatory ability of the fish may be optimal, with smolts that 496 

migrate too early or too late experiencing physiological stress (Handeland et al., 1998) and 497 

increased mortality (Antonsson et al., 2010). Increased mortality might be related to predation 498 

and its interaction with the physiological status of the smolts (Handeland et al., 1996), to food 499 

availability (Hvidsten et al., 2009), or to other stressors (Thorstad et al., 2012). Matching the 500 

sea temperature that is optimal for iono-regulation and antipredator behaviour, and the link 501 

with resource peaks that favour rapid growth is crucial for survival. For instance, Jutila et al. 502 

(2005) showed that for hatchery reared salmon smolt survival in the northern Baltic Sea was 503 

related to SST in June during the smolt emigration, and this relationship followed a dome-504 

shaped pattern with optimal survival at 9 to 12 ºC. Furthermore, warmer sea temperatures at 505 

the time of ocean entry increase subsequent catches of salmon that have spent one winter at 506 

sea (Otero et al., 2011).  507 

Various factors, including food availability affect marine survival (Beaugrand & Reid, 508 

2012). We therefore used data-rich satellite information on chlorophyll a as a proxy for 509 

productivity. We found no support for a positive association between migration timing and 510 

chlorophyll a concentration at sea entry, and chlorophyll a concentration did not track SST or 511 

was connected with photoperiod. This suggests that smolt emigration is probably not adjusted 512 

to chlorophyll peaks, and that phytoplankton abundance is a poor indicator for early post-513 

smolt feeding conditions. Successful initial feeding might be better represented by the 514 

abundance of fish larvae, large crustaceans, and nekton (Hvidsten et al., 2009; Renkawitz & 515 

Sheehan, 2011) and various other prey groups not available at the scale of this study. 516 
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Information on these prey types would probably allow evaluation of the temporal connection 517 

of marine resources with migratory cues. Nevertheless, successful feeding for early post-518 

smolts is crucial to enhance growth and avoid predators (Rikardsen & Dempson, 2011). In 519 

addition, a “correct” migration timing should ensure that post-smolts arrive at distant water 520 

feeding grounds during periods of high prey abundance. Distance from the river to the feeding 521 

area in the North Atlantic increases with decreasing latitude notably for the south European 522 

populations and it is important to be present in the north at the start of the growth season 523 

(Friedland et al., 2013). Moreover, the importance of a precise timing at ocean entry is further 524 

emphasised by the fact that smolts entering seawater outside the narrow migration window 525 

stray more to other rivers when returning to spawn (Hansen & Jonsson, 1991). 526 

We found a shift towards earlier onset of downstream migration for the Atlantic salmon 527 

smolts during the last five decades. For diadromous fishes, habitat shifts are key life history 528 

events subject to environmental variation. The downstream migration of species seems to be 529 

population-specific (Crozier et al., 2008; Jensen et al., 2012), but often with a trend towards 530 

earlier timing in recent years as noted for Atlantic salmon (Kennedy & Crozier, 2010), and a 531 

number of Pacific salmon species (Kovach et al., 2013). Nevertheless, our combined dataset 532 

estimated an overall out-migration advancement across the North Atlantic of 2.5 days per 533 

decade in the initial time of migration. This value parallels current mean estimates of global 534 

shifts of phenological responses of 2.8 days per decade in spring across the northern 535 

hemisphere for multiple taxonomic groups (Parmesan, 2007). Our estimate is, however, 536 

slightly faster than the 1.5 days shift per decade observed for a number of Pacific salmon 537 

species in an Alaskan river (Kovach et al., 2013). It is generally hypothesized that earlier 538 

phenology might be associated with the impacts of current climatic changes, and especially 539 

related to warming. However, different organisms respond differently, even when 540 

experiencing similar climatic trends (Parmesan, 2007). Further, the patterns of climatic 541 
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changes are highly heterogeneous across Earth, thus very different responses are expected 542 

among species. However, despite the differences in sensitivity to temperature, organisms 543 

should maintain their thermal niches by tracking temperature patterns (Cleland et al., 2012).  544 

Recent global analyses show that, despite spatial and seasonal heterogeneity, oceanic and 545 

terrestrial ecosystems (Burrows et al., 2011) and coastal regions (Lima & Wethey, 2012) have 546 

experienced significant increases in temperature since the middle of the last century. In 547 

addition, seasonal shifts in temperature towards earlier spring arrival have been identified. 548 

However, Burrows et al. (2011) concluded that despite land temperatures warming three 549 

times faster than the ocean, the seasonal shifts were generally greater in the sea than on land. 550 

At the scale of our analysis, we found similar trends. First, we observed comparable average 551 

warming rates of freshwater, air, and sea surface temperatures at the coastal entry points. 552 

Second, we also observed earlier seasonal warming of air and sea surface temperatures, and 553 

an association between the onset of emigration and the timing of seasonal warming in air 554 

temperature. Increasing water temperature results in earlier migration (Jonsson & Ruud-555 

Hansen, 1985). This effect has been described also for other salmonids such as brown trout 556 

(Salmo trutta) (Jonsson & Jonsson, 2011), and Arctic charr (Salvelinus alpinus) (Jensen et al., 557 

2012). Thus, it is plausible that global downstream smolt migrations have advanced due to 558 

increased river temperatures as changes in climate (Burrows et al., 2011), together with 559 

hydrological changes, are driving the current river temperature trends (van Vliet et al., 2011), 560 

which ultimately might have multiple implications for salmonid resources (Isaak et al., 2012). 561 

Thus, global warming could lead to a greater disconnect between cues for migration 562 

(photoperiod that is insensitive to climatic changes and water temperature) and the 563 

environmental conditions in the receiving marine environment with potential implications for 564 

fitness and productivity (Piou & Prévost, 2013). This effect might point to further long-term 565 

stock depression because it would no longer be possible to optimize survival if the cues are 566 



 23 

disconnected from the environment. This mis-timing would have a survival cost; however, 567 

population dynamics could still be quite stable due to compensatory dynamics (Reed et al., 568 

2011). 569 

Whether this change in migration timing of Atlantic salmon smolts is due to phenotypic 570 

plasticity or has a genetic basis remains to be understood. Despite evidence that adaptive 571 

microevolution can occur rapidly in many populations, separating the contribution of genetic 572 

adaptation and phenotypic plasticity is difficult (Hoffmann & Sgrò, 2011). For salmonids 573 

recent studies have shown that evolutionary and plastic responses can explain a phenotypic 574 

trend towards earlier migration into freshwater of sockeye salmon (Oncorhynchus nerka) 575 

(Crozier et al., 2011). Similarly, a genetically based change towards earlier upstream 576 

migration of pink salmon (O. gorbuscha) has been documented (Kovach et al., 2012). 577 

Nonetheless, our analysis cannot distinguish between the two responses and additional 578 

research is needed. 579 

Timing of downstream migration may vary depending on smolt age and size. Slower-580 

growing and older smolts tend to migrate earlier in spring within a river (Jonsson et al., 1990; 581 

Jutila & Jokikokko, 2008; but see Jensen et al., 2012). Recent analyses suggest that juvenile 582 

salmon now tend to grow faster and migrate to sea at younger ages and smaller sizes (Jonsson 583 

& Jonsson, 2005), but with large variation among rivers (Russell et al., 2012). The cause of 584 

this change in size and age may partially be ascribed to the hydrological regime and to an 585 

increase in temperature that regulate parr growth and age at smolting. Unfortunately it was not 586 

possible to assess the influence of smolt age on emigration timing since information on smolt 587 

age was lacking for most rivers and years. 588 

We conclude that downstream migration timing of Atlantic salmon is strongly spatially 589 

structured as a result of photoperiodicity. Photoperiod would be linked with the spatial pattern 590 

of sea surface temperature at the time of ocean entry and would then be a priming mechanism 591 
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differentiating the latitudinal among-river initiation of the smolt emigration. An overall trend 592 

towards earlier smolt migration was evident and probably associated with observed warming 593 

trends in the freshwater habitat. Global warming could lead to a reduced connection between 594 

the cues for migration and the environmental conditions in the receiving marine environment 595 

with potential implications for salmon survival through a mismatch with seawater conditions 596 

affecting population fitness and productivity. Declining survival would probably be 597 

associated with suboptimal ionoregulatory conditions causing an altered antipredator 598 

behaviour of the early post-smolts. Moreover, growth opportunities might be reduced if 599 

emigration timing does not match with the production of prey items that are experiencing 600 

changes in their own phenology inducing further food web alterations.  601 
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Supporting Information legends 810 

Supplementary Material and Methods: Detailed information on smolt sampling in each 811 

river is provided. Further additional details on the environmental variables are also provided 812 

here. Files: Otero et al_Supplementary Material and Methods.pdf; Otero et al_Supplementary 813 

Material and Methods_Table S3bis.xls 814 

Supplementary Results: Here we present details on model selection, model validation, and 815 

other illustrative figures. File: Otero et al_Suplementary Results.pdf 816 

Supplementary References: Literature cited in the Supplementary Material. File: Otero et 817 

al_Supplementary References.pdf 818 
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Table 1 Summary of the information used in the analyses. Years indicate the earliest and latest year with available data for any site within a 819 

country, and the total number of observations (sites and years) in that country is indicated in parenthesis. Relevant comments for each country are 820 

also provided. Further specific information for each sampling site is provided in Table S1 in the Supplementary Material and Methods.  821 

Country Nº sites Years (n) Sampling methods Comments 

1. Canada 9 1970–2010 (192) Fence, Rotary screw trap River temperature predicted from air records in 3 observations. Water 

flow non-recorded for 41 observations. SST filled in for 16 observations.  

2. USA 7 1993–2010 (76) Rotary screw trap, Inclined 

screen samplers 

River temperature predicted from air records for 24 observations. Water 

flow non-recorded for 36 observations. 

3. Iceland 3 1987–2008 (52) Fence, Fyke net River temperature predicted from air records for 2 observations. Water 

flow non-recorded for 31 observations. 

4. Scotland 2 1975–2010 (48) Wolf trap, Smolt trap River temperature predicted from air records for 29 observations. Water 

flow non-recorded for 2 observations. SST filled in for 7 observations. 

5. Ireland 2 1970–2010 (74) Wolf trap River temperature predicted from air records for 12 observations. Water 

flow non-recorded for 41 observations. SST filled in for 16 observations. 

6. England 6 1981–2010 (59) Smolt trap, Rotary screw trap River temperature predicted from air records for 19 observations. Water 

flow non-recorded for 8 observations. SST filled in for 1 observation. 
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7. Wales 2 2000–2010 (17) Rotary screw trap River temperature predicted from air records for 1 observation. 

8. France 2 1985–2010 (42) Smolt trap Water flow non-recorded for 2 observations. 

9. Spain 2 1999–2009 (21) Smolt trap River temperature predicted from air records for 4 observations. Water 

flow non-recorded for 1 observation. 

10. Russia 1 1988–1995 (6) Fence Water flow non-recorded for 8 observations. 

11. Finland 9 1972–2009 (90) Fyke net, Video camera River temperature predicted from air records for 1 observation. Water 

flow non-recorded for 38 observations. SST filled in for 8 observations. 

12. Norway 20 1976–2010 (203) Wolf trap, Net trap, Fence, 

Video camera, River fish lift 

River temperature predicted from air records for 32 observations. Water 

flow non-recorded for 13 observations. SST filled in for 6 observations. 

13. Sweden 5 1961–2010 (23) Rotary screw trap, Wolf trap, 

Smolt trap 

Water flow non-recorded for 5 observations. SST filled in for 17 

observations. 

 822 
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Table 2 Parameters for the optimal generalized additive mixed-effects model using 25% dates 823 

as the response variable obtained from 70 sampled sites (n = 903 observations). See model 824 

selection in Tables S4-S6 in the Supplementary Results.  T = Mean River Temperature; SST = 825 

Sea Surface Temperature; Y = Year. These covariates were centred by subtracting 9 and 7º C, 826 

and year 1986, respectively before inclusion in the model. lo = longitude; la = latitude; S.D. = 827 

standard deviation; S.E. = standard error; C.I. = 95% confidence interval; E.d.f = estimated 828 

degrees of freedom. Note that exploratory generalized additive models revealed a linear 829 

relationship with SST (e.d.f = 1), thus this term was modelled as a parametric term. 830 

Parameter Estimate S.E. C.I. t-value E.d.f F-value P-value 

Fixed effects        

Intercept 138.60 0.85  163.41   <0.0001 

 T      1.86 9.23 <0.0001 

SST 2.07 0.32  6.55   <0.0001 

Y     1.26 69.92 <0.0001 

lo,la     10.81 61.63 <0.0001 

Random effects (S.D.)        

 


a
 5.81  4.68; 7.21     

 


b
 1.28  0.80; 2.06     

  6.01  5.72; 6.32     

Variance function        

  0.035  0.016; 0.053     

 831 

832 
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Figure legends 833 

Fig. 1 North Atlantic environmental conditions. Basin-scale SST (a) and ln-Chlorophyll a (d) 834 

at 1º × 1º grid resolution annually averaged from 1982 to 2010 and 1998 to 2010, 835 

respectively. Seasonal effects were not removed. Note also that specific monthly averages 836 

showed the same spatial patterns for both variables. Seasonal pattern and long-term trend of 837 

SST (b, c) and ln-Chlorophyll a (e, f) for the whole region are also shown. Numbers in (a) 838 

indicate the regions examined in this study (see Fig. S1-S13 for detailed maps of each area). 839 

 840 

Fig. 2 Emigration data. Distribution of observed onset (grey hatched bars) and median (open 841 

black bars) downstream migration dates (a). Relationship between the difference in days 842 

between the median date (50%) and the onset date (25%) in each site, and latitude (b), and 843 

onset date (c). Curves in (b) and (c) show the results of fitting a Poisson generalised linear 844 

model corrected for overdispersion. Slopes were non-statistically significant (P-value = 845 

0.156), and significant (P-value < 0.0001), respectively.   846 

 847 

Fig. 3 Main model fixed effects results. Spatial trend of the onset of seaward smolt migration 848 

across the North Atlantic Ocean (a). Isopleths indicate the number of days of earlier (negative 849 

values) or later (positive values) migration than the zero isopleth (day of the year ∼138, Table 850 

2). The broken lines are the confidence bands (±1 s.e.), and the dots indicate the location of 851 

the sampling sites. Partial plots showing the effects of mean river temperature ( T ) (b), and 852 

sea surface temperature (SST) (c) on the onset of seaward migration. The long-term trend 853 

during the last five decades is shown in (d). See Fig. S15 for a plot showing the distribution of 854 

the data in (b-d). Smolt drawing credits in panel (a): © Atlantic Salmon Federation 855 

(www.asf.ca) / J.O. Pennanen.  856 

 857 

http://www.asf.ca/
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Fig. 4 Main model random effects results. Scatter plot showing the correlation (0.76, 95% 858 

C.I.: 0.30–0.93) between the site-specific random effects estimates for the intercepts (α + ai) 859 

and SST slopes (β1 + bi) obtained from the optimal model depicted in Table 2. The colour 860 

scale indicates a gradient of increasing latitude, and the dot size shows the differences in 861 

longitude. The dotted lines show the population intercept (α) and slope (β1).  862 

 863 

Fig. 5 Relationship with temperature difference. Partial plot showing the effect of the 864 

temperature difference (TDif) between fresh and seawater on the onset of seaward migration. 865 

See full results of this model in Table S7 and Fig. S20. 866 

 867 

Fig. 6 Relationships with river discharge. Partial plot showing the effect of ln-transformed 868 

mean river discharge ( Q ) (a), and the discharge-day slope for the 10-day period preceding the 869 

25% smolt descent dates ( Q ) (b) on the onset of seaward migration. See full results of this 870 

model in Table S8 and Fig. S21. 871 

 872 

Fig. 7 Temperature patterns. Frequency histograms of water temperature trends in rivers with 873 

at least 10 years of data (a), of air temperature records at stations close to the smolt sampling 874 

locations (b), and sea surface temperature (SST) at the coastal entry cells (c). Frequency 875 

histograms of changes in timing of seasonal warming in air temperature records (d), and in 876 

sea surface temperature (e). Relationship between the geographically adjusted date of onset of 877 

the smolt emigration and the date of seasonal warming in air temperature, defined as the 878 

annual achievement of the first day in each year during April and August exceeding the 75
th

 879 

percentile of the entire air temperature data set for each site (f). See Supplementary Material 880 

and Methods for details on the individual estimation of the patterns in (a-e). Note that on 881 

panels (c) and (e) there appear two extreme values. If removed, SST would warm at a mean 882 
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rate of 0.30 ± 0.02 ºC per decade, and an earlier arrival of warmer SST would occur at an 883 

average rate of 4.44 ± 0.25 days per decade. 884 


