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Abstract

Background: Animal feeding and spawning migrations may be limited by physical barriers and behavioral
interactions. Dam constructions (e.g. hydropower) commonly include gateways for fish migrations to sustain
ecological connectivity. Relative genetic impacts of fish passage devices versus natural processes (e.g. hybrid
inferiority) are, however, rarely studied. We examined genetic (i.e. microsatellite) population connectivity of highly
migrating lake-dwelling Arctic char (Salvelinus alpinus), introduced 20 generations ago, across and within two
subalpine lakes separated by a dam with a subterranean tunnel and spill gates after 7 generations. Due to water
flow regime, the time window for fish migration is highly restricted.

Results: Char populations, with similar genetic structuring and diversity observed across and within lakes, were
admixed across the dam with fishways during feeding. For spawning, however, statistically significant, but very low
population differentiation (θ; 0.002 - 0.013) was found in nine out of ten reproductive site comparisons, reflecting
interactions between extensive migration (mean first generation (F0) = 10.8%) and initial site fidelity. Simulations
indicated that genetic drift among relatively small effective populations (mean Ne = 62) may have caused the
observed contemporary differentiation. Novel Bayesian analyses indicated mean contributions of 71% F0 population
hybrids in spawning populations, of which 76% had maternal or paternal native origin.

Conclusions: Ecological connectivity between lakes separated by a dam has been retained through construction
of fishways for feeding migration. Considerable survival and homing to ancestral spawning sites in hybrid progeny
was documented. Population differentiation despite preceding admixture is likely caused by contemporary reduced
reproductive fitness of population hybrids. The study documents the beginning stages of population divergence
among spatial aggregations with recent common ancestry.

Background
Genetic differentiation, fundamental to population
genetics, is initiated by restricted gene flow and repro-
ductive isolation mechanisms within gene pools [1,2].
Habitat and population fragmentation with concomitant
disruption of ecological connectivity is threatening biota
worldwide, on large scales determined by time since iso-
lation and physical reproductive barriers among demes
[3]. On finer scales, genetic differentiation may addition-
ally involve reproductive behaviors and social interac-
tions [4,5]. Addressing genetic effects of physical

barriers and reproductive behaviors in novel populations
may forecast evolutionary consequences of human
intervention.
Natural ecological connectivity may fluctuate in time

and space, but anthropogenic alterations (e.g. water reg-
ulation) typically exaggerate this variation. Human
impacted water flows and water habitat fragmentation
expanded greatly worldwide in the twentieth century
[6]. In Europe (excluding Russia) close to all large river
systems are fragmented by dams [7], inevitably present-
ing impediments to migration. Construction of habitat
corridors to sustain ecological connectivity may in the-
ory counteract negative fragmentation effects [8],
although empirical evidence is limited. A number of
often retrospective fish passage improvements have been
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designed to reduce ecosystem wide effects of (hydro-
power) dams [9]. Dams commonly allow passive or
active downstream drift of fish, but obstruct upstream
migration. World Commissions of Dams with contribut-
ing papers [10,11] and recent reviews [12-14], highlight
the need for empirical studies addressing long term
effects of fish passage success. Migration barriers may
obstruct passage directly or negate otherwise adaptive
benefits of homing and assortative mating indirectly
[15-17].
Genetic drift and behavior may induce reproductive

isolation mechanisms operating on fine scales. Genetic
microstructure even within continuous habitat is
reported [18,19], although the biological relevance of
weak differentiation is debated [20-22]. Within-lake
genetic structure for highly mobile fish without obvious
migration barriers have similarly been documented
[23-28] for a traditional evolutionary time perspective.
Genetic structuring and adaptive microevolution may,
however, also occur on contemporary time scales
[29-33]. Recently founded or invasive species provide
opportunities to study initial genetic divergence and
evolution in the wild [34], but few studies have evalu-
ated contemporary genetic structure in the invasive spe-
cies [35-37]. Moreover, we are not aware of assessment
of initial genetic structure in recently founded and
highly migrating species that are temporally (i.e. season-
ally) admixed. Recently founded salmonid species in
freshwater lake habitats represent natural small scale
experiments that provide opportunities to study the
details of early stages of population divergence.
Micro-scale studies under initial admixture introduce

challenges concerning sampling design and analytical
approaches. For obvious reasons, sample sizes are often
restricted both in numbers and temporal replicates. In
continuous habitats sampling units may be difficult to
delineate. Widely used Bayesian methods to infer cryptic
population structure [38-40] may not, however, detect
population substructure of recently established popula-
tions with low differentiation. Inclusion of population
migrants and hybrids (i.e. admixed ancestry) in presum-
ably distinct populations may lead to underestimates of
differentiation and erroneous conclusions regarding
reproductive isolation.
Reproductive isolation may be reinforced by homing,

as documented within a wide range of species [41,42].
Successful reproduction of migrants may be common,
caused by relaxed selection against non-natives resulting
in non-native offspring, or hybrid offspring with
admixed ancestry which break down incipient popula-
tion differentiation [5,43]. Further differentiation
requires reduced reproductive success of non-native and
hybrid progeny. Therefore, studies of population admix-
ture and hybrid contribution to population segregation

under incomplete divergence are important and may
possibly unveil biological relevant differentiation. Tradi-
tional measures of population differentiation combined
with recently developed Bayesian statistics [44] now per-
mit studies of how inter-population hybrids may affect
population differentiation.
Here we study genetic differentiation of Arctic char

(Salvelinus alpinus), introduced around 1920 (i.e. 20
generations ago), across and within two lakes: Pålsbuf-
jorden (PAL) and the downstream Tunhovdfjorden
(TUN) (Figure 1). The two lakes, naturally connected by
a short river, were separated by a dam in 1946, creating
two hydropower reservoirs. Both lakes have geographi-
cally distinct char spawning sites (PAL; P1 - 3, TUN; T1
- 2) for which we assess population connectivity imple-
menting 10 microsatellites. The first objective was to
examine genetic structure across lakes to quantify pre-
sent effects of two migration enhancements at the dam;
a subterranean tunnel and spill gates. An additional
summer sample (X) of lake feeding and presumably
admixed char from PAL was included to assist interpre-
tation of differentiation. We expected to find greater
genetic differentiation across lakes than across popula-
tions within lakes, and assignment of sample × to PAL
populations. We also expected that passive migration
downstream would exceed upward migration and result
in observed asymmetric migration and associated
genetic variation. The second was to examine migration
patterns and population hybrid contributions potentially
responsible for contemporary genetic substructure. Due
to expectations of low population differentiation in the
progress towards reproductive isolation, we intend to
deliberate over the paradox of population divergence in
the face of migration, rather than to state absolute
assertions.

Results
Amplification and allele calling of 190 individuals over 6
sites was obtained in 99.8% of the cases, and secondary
amplifying and allele calling of a subsample gave consis-
tent results. Number of alleles per locus averaged 15.4
(SD ± 7.2, range 2 - 26, Additional file 1). Quality con-
trol screening did not reveal indications of scoring error
due to stuttering or evidence for large allele dropout.
The test for null alleles assuming Hardy-Weinberg equi-
librium (HW) suggested that null alleles may be present
for locus Sco204 in sample site T2, by general excess of
homozygotes. However, the combined probability for all
homozygote class frequencies was not significant (P >
0.05). No deviations from HW were found, but nonran-
dom association of alleles from different loci was indi-
cated in 12 and 9 (Sco 213/Sfo8, Smm17, Smm24, Str73;
Sfo8/Smm17, Smm24, Str73; Smm24/Smm17, Str73) of
45 tests uncorrected and after false discovery rate (FDR)
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correction [45] at 5% level, respectively. Genetic varia-
tion revealed a mean value of local FST = 0.024 (range
0.013 - 0.036), and inbreeding F = 0.028 (range 0.003 -
0.053) over sites.

Dam barrier to migration and gene flow
Measured lake water levels and estimated velocities in the
fishways indicated possible upstream migration only within
very limited windows of time. During 2000 - 2010, migra-
tion through the tunnel was feasible in less than 3.6% of the
year (mean 13 days per year, SD ± 20, min 0, max 55).
Migration through the spill gates was possible in less than
1.7% of the year (mean 6 days per year, SD ± 4, min 1, max
16). Upstream migration was possible in all seasons through
gates, but only through the tunnel in spring.
Observed heterozygosity and allelic richness was simi-

lar between lakes (Additional file 1). Number of private
alleles found totaled 22, 6 in TUN and 16 in PAL (data
not shown).
The total allele frequency variation consisted of 99.3%

(P < 0.001) variation within populations, 0.7% (P =
0.001) variation among spawning sites within lakes and
no variation between lakes (P = 0.499). Genetic differen-
tiation of char from the two connected lakes PAL and
TUN was, however, highly significant (P = 0.001) but
very low (θ = 0.003, standardized (θ’) = 0.014). Removal
of first generation migrants (F0), amounting to 7 and 9%

in PAL and TUN (not significant after correction, 170
tests, threshold P = 0.0003), respectively, did not affect
this differentiation. STRUCTURE did not detect genetic
structure among lakes or sites (K = 1).
Estimated FST and exact tests revealed that one

spawning population (T2) was significantly different
from a summer feeding sample (X) in PAL (Table 1).
Sample × assigned to both lakes (TUN, 25%), and 30%
was most similar to spawning site T1 on a population
level (Table 2), indicating upstream migration.

Figure 1 Map of sample localities. Map of the study area with Lake Pålsbufjord (PAL) and the downstream Lake Tunhovdfjord (TUN). Minimum
water level (LRV) is indicated by the grey line, and sampling sites are marked with dots and abbreviations (P1 - 3, T1 - 2 and X). Solid bars
indicate semi-barrier, while broken bars indicate partial restriction to up- and downstream migration.

Table 1 Population differentiation

Sample
site

P1 P2 P3 X T1 T2

P1 0.0125* 0.0051* -0.0046NS 0.0076* 0.0060*

P2 0.0035* 0.0038* 0.0044NS 0.0022* 0.0105*

P3 0.0103* 0.0050* -0.0045NS 0.0030* 0.0098*

X 0.6572NS 0.1290NS 0.9587NS <
0.0001NS

0.0026*

T1 0.0085* 0.0473NS 0.0019* 0.5535NS 0.0046NS

T2 0.0004* <
0.0001*

<
0.0001*

0.0045* 0.0580NS

Pairwise test of differentiation (θ, upper), and P-values from exact test in
TFPGA (lower) between spawning char in PAL (P1 - 3), TUN (T1 - 2) and a
mixed summer sample in PAL (X). Indicative adjusted nominal level (5%) in
pairwise test for multiple comparisons is 0.00333, initial k = 15. Non-
significant (NS) and significant (*) differentiation at 5% level after FDR
correction.
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Migration beyond F0 was assessed with a maximum
likelihood approach for assignment and with Bayesian
estimates for present and contemporary estimates. Self-
assignment of individual char in GENECLASS2 revealed
93 and 46% correct assignments to Lake PAL and TUN,
respectively, suggesting a downstream source-sink struc-
ture. Probability estimates of ancestral origin over the
last generation estimated in the software program
BIMR, also indicated high, but more symmetric migra-
tion rates. With the two lakes as populations, mode
allele frequencies showed almost equal ancestral native
origin for the two lakes (PAL; 56%, highest posterior
density intervals (HPDI): 34 - 75, TUN; 59%, HPDI: 25 -
90), with estimated HPDI for non-native origin of 24 -
65% and 9 - 74%, in PAL and TUN respectively.
Mode probability of hybrid ancestral origin for the

pooled samples within lakes estimated in BIMR were
50% in PAL (HPDI = 36 - 49) and also 50% (HPDI = 13
- 48) in TUN. Nevertheless, pure origin from the home
lake was more common than pure origin from the other
lake.

Lentic population migration and admixture
All except one test of genetic differentiation among
spawning sites were significant (mean θ = 0.007, SD ±
0.003). Mean standardized differentiation (θ’) was 0.030
(SD ± 0.016). Exact tests corroborated the pattern of
significantly differentiated spawning sites (Table 1).
Using spawning sites as prior populations, 37% of the
char assigned to its sampled site, varying from 12 - 62%
among sites (Table 2). Mean probability of best assign-
ment, however, was only 51% (SD ± 28), indicating
recent admixture, migration, or un-sampled populations.
Exclusion of 18 char (11%) found to be F0 migrants
across spawning sites (range 1 - 5, Table 2, not signifi-
cant after correction, 170 tests, threshold P = 0.0003)
increased population segregation and resulted in all
spawning populations being significantly different (θ >
0.002, θ’ > 0.008, P < 0.021). This finding corroborates
the estimated migration rates. Analyses in IMMANC
verified migrant detection (8%) with a power of 0.968.

The Bayesian probability that the sampled alleles within
spawning sites originated from the same site last genera-
tion (ancestral rate) were 0.47 across sites (SD ± 0.09,
min 0.34, max 0.60), and higher than the probability of
origin from any other population (mean 0.13, SD ± 0.10,
min 0.02 max 0.29).
Mixed ancestry analyses indicated that population

hybrids constituted a substantial proportion within
spawning sites. The majority of hybrids within all sites
were progeny of native and non-native char (mean
54%), whereas hybrids of two non-natives were less
common (mean 17%, Figure 2). Similar to pooled lake
estimates, the mode probability of home origin within
sites was consistently higher than pure non-native origin
within sites, and consequently higher for hybrids with
partial native ancestry than for any other mixed ancestry
across sites. Standard deviations of mixed ancestry esti-
mates were generally similar to mode estimates.

Potential interpretation bias
Potential bias and biological relevance of observed data
were addressed to assure sound interpretations. FST
tests excluding loci with possible LD (Sco213 and Sfo8)
revealed similar differentiations as for all loci combined

Table 2 F0 migrants and population assignment

Assigned population

Sample site N F0 P1 P2 P3 T1 T2 na

P1 34 0.15 0.32 0.15 [0.03] 0.32 [0.03] 0.18 [0.06] 0.00 0.03 [0.03]

P2 34 0.03 0.12 0.38 0.38 [0.03] 0.12 0.00 0.00

P3 34 0.12 0.03 0.09 [0.03] 0.62 0.15 0.03 0.09 [0.09]

T1 34 0.09 0.18 [0.03] 0.12 [0.03] 0.21 [0.03] 0.38 0.09 0.03

T2 34 0.15 0.21 0.09 0.24 [0.09] 0.35 [0.06] 0.12 0.00

X 20 0.15 0.00 0.55 0.3 0.00 0.00

Frequencies of first generation (F0, before FDR correction) migrants and char from the spawning sites (PAL; P1 - P3 and TUN; T1 - 2) and a mixed summer sample
in PAL (X) assigned (na: non-assigned) to the five spawning sites estimated in GENECLASS. Frequencies of F0 migrants are given in brackets.

Figure 2 Ancestral origins. Pooled ancestral state proportions of
spawning char at site P1 - 3 in Lake Pålsbufjord, and site T1 - 2 in
Lake Tunhovdfjord, estimated in BIMR. Hybrid native indicates that
one parent is from the local population, while hybrid non-native
indicate parental origin of two different non-native populations.
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(data not shown). The FST estimate per locus averaged
0.0064 (SD ± 0.006, min 0.001, max 0.023). Exclusion of
single loci generally weakened spawning site differentia-
tion, but did not change the above pattern, thus indicat-
ing neutral behavior of markers.
AMOVA analyses segregated based on year-classes

revealed 100% variation within sites and a lack of varia-
tion among year-classes (FST = -0.001, P = 0.624),
whereas hierarchical analyses based on spawning sites
revealed that 99.45% of genetic variation stemmed from
within-population variation and 0.55% (FST = 0.006, P =
0.002) from among-population variation. Thus, genetic
variation was congruent with the high variability of
microsatellites used, indicating temporal stability among
consecutive year-classes. Pairwise year-classes were not
significantly different within any spawning site (θ < 0.060,
P > 0.013), or pooled across sites (θ < 0.004, P > 0.184).
Removal of year-classes one-by-one changed the signifi-
cance in 15.5% of the pairwise tests, but did not affect the
pattern of differentiation among spawning sites.
We did not find evidence for family structures affect-

ing population differentiations. Simulations indicated a
power of 1.000 and 0.918 to discriminate unrelated from
full sib and half sib, respectively. Only 0.1% of pairwise
tests had relatedness coefficients ≥ 0.25, indicating half
sib relationship, and half of these were across sites.
Mean distribution of relatedness (LRM) for the pooled
dataset was negative (μ = -0.003, SD ± 0.045, Figure 3),
although positively skewed (1.640) and not normally dis-
tributed (P = 0.010). Sites individually revealed the same
pattern (not shown), with lack of bimodal patterns that
could have indicated kin-groups.
Effective population sizes (Ne) were estimated to be 52

- 71 individuals within spawning sites, 133 - 142 within

lakes, and 233 in total (Table 3), supporting both across
and within lake genetic structure. Estimates were not
affected by prior values of Ne. Estimates of effective par-
ental population size (Nb) were generally higher but
similar to Ne, except negative and infinite for population
P1. This may indicate sampling error, or no evidence for
LD caused by genetic drift due to a finite number of
parents. Tests for LD did not, however, give significant
deviations for any loci combination at this site, after
FDR correction. Recent bottlenecks over all loci were
not confirmed for any of the tests (P > 0.080), assuming
a mixed mutation model (TPM). Neither did tests for
di-nucleotide and tetra-nucleotide loci separately, under
TPM and a single-step mutation model (SMM) respec-
tively, reveal signs of severe loss of allelic diversity (nor-
mal L-shaped distribution, P > 0.060), except for
population P2 and tetra-nucleotide loci, where the Wil-
coxon test for heterozygosity excess was significant (P =
0.030). Test for isolation by distance (IBD) was positive
but not significant (r = 0.29, Pupper = 0.250, Plower =
0.760).
Forward simulated FST estimates (Figure 4), indicated

that genetic drift alone may have caused the observed
population differentiation. For instance, five populations
with Ne = 60 were significantly differentiated (mean θ =
0.005, SD ± 0.002, P < 0.047) after a mean migration
rate of 0.3 in 20 generations, assuming initial admixture
after introduction. Ten independent replicates of this
scenario indicated similar differentiation (mean θ =
0.006, SD ± 0.001). IMMANC indicated detection power
for migrants (8%) and hybrids (7%) in our sampled data-
set to be 0.968 and 0.638, respectively.
A forward simulated alternative hypotheses of m = 0.01

revealed high differentiation (mean θ = 0.122, SD ± 0.019,

Figure 3 Pairwise relatedness. Ritland and Lynch (1999) pairwise relatedness (LRM;[153]) histogram for the pooled sample, with fitted normal
density curve. Pairwise counts are given on top of bars.
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P < 0.001) between reproductive sites, whereas m = 0.99
revealed lack of differentiation (mean θ = 0.001, SD ±
0.001, P > 0.176). A scenario without migration only indi-
cated 5.0% (1.3% after correction) F0 migrants in GENE-
CLASS, similar to expectations from type 1 errors. Similar
analyses in IMMANC indicated 10.7% (1.0% after correc-
tion) F0 migrants and 10.0% (1.3% after correction) F1
hybrids, with mean power > 0.999. Coalescent simulations

supported that drift alone may have caused contemporary
site fidelity (Additional file 2).

Discussion
Migrations
Our results suggest that constructed gateways for migra-
tion ensured alternate habitat utilization and gene flow
across the dam separating the two studied lakes. Signifi-
cant differentiation was found between spawning char
from the two interconnected lakes, but differentiation
among populations within lakes equaled or exceeded
that for lakes. Without assuming any direct relationship
between FST and gene flow (below), these relative mea-
sures are low and indicate high connectivity across the
dam. Char with genetic assignment to distinct popula-
tions in both lakes were caught during feeding migration
in the upper lake in summer, indicating upstream
migration across the dam. Corroborating this, gene
diversity and genetic structure were similar across and
within lakes.
Extensive migration reflecting seasonal foraging

admixture across lakes and populations is independently
corroborated by tagging studies [46,47]. Barrier type,

Table 3 Effective population sizes

Lake Population Ne (ONESAMP) Nb (LDNE)

PAL P1 63.6 (47.9 - 106.8) ∞ (229.3 - ∞)

P2 53.9 (41.3 - 87.5) 58.0 (43.3. - 84.0)

P3 51.7 (39.9 - 83.0) 56.5 (42.8 - 79.8)

PAL total 132.6 (111.0 - 173.5) 272.5 (198.7 - 416.5)

TUN T1 69.8 (51.8 - 124.0) 62.0 (46.2 - 90.3)

T2 70.6 (48.8 - 135.1) 45.4 (33.3 - 66.8)

TUN total 142.4 (100.3 - 263.6) 105.6 (79.9 - 149.5)

PAL/TUN total 232.5 (202.7 - 278.9) 312.6 (244.6 - 422.0)

Estimated mean effective population size (Ne) and parental population size
(Nb) with 95% C.I., from ONESAMP and LDNE respectively from PAL (P1 - 3)
and TUN (T1 - 2) and pooled data. Negative estimates are reported as infinite
(∞).

Figure 4 Population differentiation simulation. Simulated effects of relevant migration rates and effective population sizes to mean (SD)
pairwise differentiation between 5 populations, after 20 generations.
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hydrology and life stages of focal species all interact in
determining the impact of barriers [48]. Tunnels asso-
ciated with turbine outflow at dams are known to
attract ascending salmonids [49-51]. The lack of tur-
bines in the PAL dam tunnel makes migration through
the tunnel possible. It is an open question, however, to
what extent char in our study lakes utilize the spill gates
or the tunnel for (upstream) migration. Ongoing studies
in brown trout also reveal high dispersal across the focal
dam, with unknown proportional use of the fishways
(unpublished). Regardless, results indicate that char, in
both cases, take advantage of the highly restricted time
window suitable for upstream migration. Disentangling
present from previous genetic structure and biological
interpretation of low differentiation is, however, challen-
ging (below), and results should therefore be interpreted
with caution.

Contemporary genetic substructure
The present study documents that genetically differen-
tiated sympatric populations can be established within
decades. Pairwise genetic differentiation was found to be
significant, but very low, both among lakes and among
most spawning sites within lakes, indicating spatial
reproductive isolation even within continuous habitat.
Estimates of Ne supported this. However, STRUCTURE
did not reveal any population structuring. Performance
of Bayesian clustering methods decreased for FST < 0.02
[52], and we propose that even the novel algorithm used
in STRUCTURE [39] may not detect recently estab-
lished populations with very low differentiation (FST <
0.01).
Low differentiation is expected due to the short time

since species introduction, and the migratory behavior
of char. Following the simplistic [53,54] equation FST ≈
1/4Nm + 1), our mean local FST estimates indicate long
term Nm = 10.2, and migration rates of 0.17 assuming
Ne = 60. Fixed m = 0.5 would reveal the same differen-
tiation if Ne is as low as 20. As an example, 60 indivi-
duals and m = 0.5 result in the same differentiation as e.
g. 1000 individuals with 3.0% gene flow. In contrast, if
we assume F0 analyses (mean m = 0.11) are representa-
tive for present gene flow, and implement Ne’s of 60,
the present Nm is 6.6, likely overestimated due to com-
mon reproductive inferiority in migrants. Consequently,
mean gene flow between populations may have
decreased since introduction. Thus, present genetic
structure does not reflect panmixia [55]. Both estimates,
however, indicate that gene flow is too small to bring
about drift connectivity [53], but too large for Bayesian
detection of subdivision [54]. A denotation of the
sampled reproductive entities as populations, according
to the evolutionary and especially the ecological para-
digm [22] is, however, debatable. Maximum FST

estimates will be limited by heterozygosity [21], and esti-
mated differentiation may underestimate true population
differentiation [56], especially when gene diversity is
high [57]. Similar standardized population differentiation
is previously found in char [58]. Direct comparisons of
observed θ are complicated, but similarly low and biolo-
gical relevant differentiations are found in both mam-
mals and fish [59,60]. Interestingly, similarly low, but
significant differentiations are also found among popula-
tions of char founded thousands of years ago [61], and
population structure of lake-dwelling brook char (Salve-
linus fontinalis) has been found on a smaller geographi-
cal scale under migration-drift equilibrium [62] than in
our study. Low but significant pairwise differentiations
are also found in invading catadromous crustaceans
separated after recent colonization [35]. This study also
documented strong genetic drift simultaneously with
significant differentiation (FST > 0.007), but among year
classes, as opposed to our study.
True substructures in our study were corroborated by

Ne estimates, genetic variability, year-class stability and
low number of sib-groups within sites. Invasive species,
such as char in our lakes, are expected to express low
genetic variation and Ne, caused by founder events and
population bottlenecks [63-65]. The high level of genetic
variation within the examined loci in our populations
does not suggest depauperate populations or bottlenecks
on the surveyed scale, which would otherwise certainly
support genetic differentiation caused by strong genetic
drift in very small founding populations. The concept of
founder populations, however, suggests that current
structure is novel. We are not aware of evidence from
the literature that fish populations bred in admixture
may resume historic population structures in novel
habitat. Simulations, however, documented that drift
alone, even in larger populations, could cause rapid dif-
ferentiation. Estimation of population size based on sin-
gle samples relies on a number of simplifying
assumptions [66,67]. Our estimated population sizes
should therefore be interpreted with caution. Echosoun-
der and gillnetting experiments [68] suggest a popula-
tion size of char around 9000 in PAL, returning Ne/N ≈
0.015, which is common for marine fish [60] but low
compared to most salmonids [69,70]. Nevertheless, esti-
mated Ne and Nb gave similar results, and suggest popu-
lation sizes sufficient to confer contemporary genetic
stability as well, as opposed to a transitory or strict
metapopulation structure [71]. It is possible, however,
that estimates are inflated by immigrants and sampling
of hybrid zones, even though no deviations from HW
were evident. Regardless, the question remains whether
one is actually able to sample biological populations cor-
rectly, and if hybrid contribution represents true popula-
tion structure. The presence of immigrants and hybrids,
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not contributing to the reproductive population gene
pool, can easily complicate interpretations of genetic
diversity, Ne and genetic differentiation.

Initial genetic structure
The low level of interspecies competition and vacant
niches fits well with rapid establishment of char in our
lakes, and zooplanktivores such as char show a high rate
of invasion success [72]. Genetic differentiation by
means of the evolution of reproductive isolation can be
viewed as non-ecological modes of differentiation such
as founder effect or genetic drift in small populations,
or by divergent natural selection [73,74]. Lag time
between initial colonization and the onset of rapid
population growth is expected in invasive species [75],
in particular if evolutionary adaptation is important dur-
ing colonization. Thus, the rapid expansion in the lakes
surveyed [76] corroborates the independent simulations,
pointing to genetic drift as an initial diversifying factor
for observed population differentiation. However, theory
[1,77,78], experiments [79] and empirical studies [80-85]
all suggest a potential for rapid evolutionary changes
involving adaptation in newly founded populations.
Moderate levels of plasticity are also typical for char
[86,87], and may also have been optimal for fast genetic
evolution [81,88-90].
The combined genetic and ecological data suggest that

the initial genetic structure and diversity within our
lakes is a result of site fidelity and initial drift. Several
evolutionary forces may, however, interact at the same
time. Realistic and rapid drivers of cryptic kin selection
[91] or discontinuous adaptive variation [32,92-94] may
add to incipient reproductive isolation. Once sub-struc-
ture is established, site fidelity, drift, and low effective
migration rates may strengthen differentiation in time
and space. Such isolation by adaptation [95] is likely
facilitating drift in neutral loci by reduced gene flow as
a general barrier mechanism [96], and even neutral mar-
kers may detect adaptation in the face of intermediate
migration [97].

Differentiation despite extensive migration
Substantial migration among reproductive sites was
found, without significant IBD, suggesting little present
drift. Thus, although common in salmonids, equilibrium
between gene flow and genetic drift is not present
[98,99]. Migration analyses may be biased by method
assumptions, un-sampled populations, low differentia-
tion and convergence problems [44,100,101]. However,
all methods used to interpret migration in our study,
indicated considerable migration among lakes and popu-
lations. Extensive migration among populations is often
seen in salmonids [43]. Homing and kin discrimination
will, however, contribute to genetic structuring and is

widely known in fish [102], particularly char [103-106].
Pairwise genetic differentiation of other neighbouring
lacustrine char populations has been found to be highly
significant, despite long term migration rates of 1.853 -
2.755 individuals per generation [107]. Low levels of
effective migration, i.e. gene flow among sympatric
populations, contrary indicate breeding site fidelity in
established populations [107,108]. Reproductive diver-
gence despite extensive migration in the study at hand
indicates restricted effective gene flow between lakes
and populations, even after 20 generations. Thus, at first
glance, one may be tempted to conclude that results
indicate reproductive selection against immigrants in
newly established populations, along the lines of pre-
vious studies [77,83,109]. Alternatively, one may specu-
late that breakdown of non-native gene flow is caused
by reduced reproductive fitness of population hybrids.

Hybrid contribution during naturalization
The hierarchical Bayesian analyses of mixed ancestry
confirmed non-native spawning success. The large pro-
portion of hybrids documents reproduction by immi-
grants, i.e. relaxed selection against non-natives early in
differentiation and survival of hybrids. Selection against
population hybrids and immigrants strengthen diver-
gence [110,111]. Hybrids of sympatric and closely
related (FST = 0.070) perch (Perca fluviatilis) were found
to have reduced fitness in early life stages in laboratory
experiments, but the authors did not test for hybrid
inferiority in vivo [112]. Novel habitats without competi-
tion as in our study may have promoted survival of
hybrids, despite potentially reduced fitness. However,
hybrids may be less competitive in secondary stages of
naturalization, as increased population divergence
reduces hybrid fitness [113].
In our study, hybrids without parental origin from

their spawning site (Figure 2; non-native hybrids) consti-
tuted a minor part of mature char caught at their repro-
ductive site. The considerably larger proportion of
individuals with partial native ancestral origin indicates
hybrid homing. Reproductive units sustained by kin dis-
crimination are found in a range of species [114-117],
and hybrid juveniles of char will be in close proximity
to kin when hatching. Population differentiation, how-
ever, could only be established if reproductive success of
returning hybrids is low. Admixed individuals would
otherwise have caused migration loads obscuring effects
of selection and differentiation [109]. Postmating repro-
ductive isolation and hybrid inferiority have been
addressed for a century [2,111]. Both theoretical and
empirical studies frequently reveal selection against
hybrids during speciation, although its origin seems
unclear [74,96]. Sexual selection (mate choice) against
hybrids is found across taxa [e.g. insects; [118], fish;
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[119]], and may also characterize char. Such mechan-
isms may evolve faster in small populations [120], as
within our sites. Social recognition of relatives in fish
using odour cues can induce assortative behavior in fish
[121-123]. Finally, high dispersal rates may increase the
absolute number of hybrids, but the increased competi-
tion reduces hybrid reproductive fitness, and conse-
quently increases reproductive isolation of the resident
population [96].

Conclusions
Migration corridors between populations separated by
dams may be valuable for sustaining evolutionary poten-
tial. This study demonstrates that even temporally very
limited connectivity through a subterranean tunnel and
spill gates between two regulated lakes, likely counteract
genetic isolation in char.
Initial stages of genetic divergence of subpopulations,

despite high migration rates, are documented in this
study. We are not aware of previous studies addressing
hybrid migration and reproductive success in recently
founded and admixed populations. Our study indicates
that population differentiation may be detectable,
despite inclusion of hybrid sub-populations, when asses-
sing genetic structure among populations. Combined
also with independent mark-recapture data by Aass
[46,47], our genetic approach indicates that hybrids con-
tribute extensively to migration rates in recently
founded populations. Population hybrid events may have
been important in establishing the diverse population
structure in the novel habitat [78]. However, present dif-
ferentiation implicates nascent non-native and hybrid
inferiority, whether biologic or ethologic [32,91]. Esti-
mates generally gave wide HPDI, an inherent problem
expected from low differentiation affecting accuracy
[44], and results must be interpreted with caution.
Few population genetic software programs have been

evaluated with respect to their performance in detecting
low genetic differentiation, making interpretation of dif-
ferentiation close to admixture difficult [53,124]. How-
ever, restricted power in admixture analyses should not
restrict studies of hybridization mechanisms, as they
raise consequential questions in micro-evolution and
behavioral ecology. Both small scale empirical and larger
simulation studies of incomplete reproductive isolation
may guide management of invasive and naturalized spe-
cies, potentially unveiling initial population differentia-
tion mechanisms.

Methods
The study species
The Arctic char is a salmonid fish with Holarctic distri-
bution [125] showing extreme phenotypic and life his-
tory variation, exemplified by weight at maturation from

3 g to 12 kg [87]. This reflects the species capability to
evolve trophic polymorphism and possible genetic differ-
entiations within drainages [126] and lakes
[107,127,128]. While most populations of char result
from natural postglacial colonization, high altitude
populations are introduced by man. When in sympatry,
Arctic char typically have a benthopelagic distribution in
landlocked habitat. Young char typically feed in the lit-
toral, shifting towards a highly migratory pelagic feeding
pattern as adults. Lacustrine char are commonly 20 - 40
cm in length and a few years old when mature, and
spawn in the littoral within a few weeks in autumn. Site
fidelity is common, but reproductive ecology is poorly
understood (see Jonsson et al. 2001 [86], Klemetsen et
al. 2003 [87] and Johnson 1980 [129] for excellent
reviews).

The study site
Lake Tunhovdfjord (TUN) and Lake Pålsbufjord (PAL)
are part of a 35 km long sub alpine hydroelectric reser-
voir located in south-central Norway (48°E, 67°N, Figure
1), regulated first in 1919. A hydropower dam separating
the two lakes was erected in 1946, restricting the pre-
viously free migration among the lakes to migration
through spill gates in the dam (lower level 734.9 m a.s.l.,
c 10 m, c 3.1 m2, neutral gradient) and a subterranean
anthropogenic branch (lower level 722.4 m a.s.l., 1300
m, 7.1 m2, neutral gradient) with outflow 600 m below
the dam. Lake PAL now has a surface area of 5.25 -
19.5 km2 with maximum depth 25 m, 725.5 - 749.1 m a.
s.l.. Lake Tunhovdfjord, located immediately down-
stream, has a surface area of 14 - 25 km2 and a maxi-
mum depth 70 m, 716.4 - 734.4 m a.s.l. Arctic char are
sympatric with brown trout (Salmo trutta) and invasive
European minnow (Phoxinus phoxinus) in both lakes.
Brown trout have probably been native for > 6000 years
[130,131]. Minnow were introduced coincidentally
around 1920.
In 1910, 10.000 fry from a natural char population in

Lake Tinnsjø (187.2 - 191.2 m.a.s.l., 51 km2, mean depth
190 m), situated in a different watershed 80 km south-
west of PAL and TUN were stocked in two alpine lakes
above PAL [132,133]. Char were first observed in PAL
in 1919. The population expanded rapidly and was pre-
sent in large numbers in both PAL and TUN after a
decade [76]. Densities have thereafter been highly vari-
able, probably because of large water level fluctuations
and associated egg mortality [68,134]. Char in these
lakes seldom become more than 8 years old and have a
generation time of about 4 years (20 generations since
introduction). They are usually < 200 g [68], although
cannibalistic individuals of 3 kg have been reported [47].
Extensive mark-recapture studies have revealed substan-
tial char movements within and between the lakes [134],
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even after the construction of the dam in 1946. Char
feeding migration intensity increases in late summer and
autumn. The majority of adult char congregate in out-
lets and narrow parts of the lakes after spawning in
autumn when water level drops, followed by c. 10 - 50%
passive displacement downstream in the spring [134].
Char emigrating PAL often attempt to re-enter the lake,
but successful upstream migration is unknown [47].
Arctic char are low performance swimmers as

opposed to brown trout [135]. Maximum relative swim-
ming speed (body length s-1) is about 2.8 [136], thus a
water velocity of 150 cm s-1 is likely an absolute limit
for upstream migration for studied char across the dam.
The Mannings formula; v = M * Rh

2/3 * √I [137], assum-
ing M = 35, was used to estimate elevation heads asso-
ciated with 150 cm s-1 water velocity in the fishways.
The water level below the dam in TUN commonly
increases (up-arches) to the lower level of the gates.
There is also free entrance from TUN to the subterra-
nean tunnel independent of water level. Thus, migration
was estimated to be solely restricted by water levels in
PAL at 734.9 - 735.2 m a.s.l. in the gates, and 722.4 -
726.4 m a.s.l. in the tunnel. The water level in PAL was
registered from year 2000 - 2010.

Sampling
A total of 190 mature char (mean total length 244 mm,
SD ± 31, range 170 - 334) were sampled by gillnetting
at four sites in PAL and two sites in TUN (Figure 1).
Samples represented 54% males (i.e., presence of
gametes) and the year classes 1999 - 2003 (N = 31, 37,
48, 37 and 2, respectively, as determined by scales and
otoliths of 155 char). All char except those from T2
were aged, but these fish had similar size distribution.
Samples from site P1 - 3 and T1 - 2 each included 34
char ready to spawn this season (gonadal stage 4 - 6)
caught at traditional and geographically separated
spawning sites below minimum water level (LRV) during
spawning time, and are therefore treated as discrete
populations, although true population boundaries are
unknown. Additional spawning sites within the two
lakes are not known. Site × (N = 20) is a randomly cho-
sen mid-lake sample from late summer two months
prior to spawning, representing admixtured non-spawn-
ing char.

Microsatellite genotyping and variability
Tissue samples of approximately 2 mm2 from the adi-
pose fin were preserved in 96% ethanol in the field, and
DNA was isolated using DNeasy kit (QIAGEN), follow-
ing the manufacturer’s guidelines. Microsatellite poly-
morphism was analyzed by means of 10 di- and tetra-
nucleotide loci known to be polymorphic in S. alpinus;
Mst-85 [138], Sco202, Sco204, Sco213 [139], Sfo-8, Sfo-

23 [140], Smm-17, Smm-24 [141], Ssa-85 [142] and
Str73 [143]. One primer for each locus was end-labeled
with fluorescence (HEX, FAM and NED), and run partly
as multiplex PCR reactions; multiplex A; Sfo-8, Smm-
17, Smm-24, Str73 and Sco21, multiplex B; Sco202 and
Sco204, and multiplex C; Sfo-23 and Ssa-85. Each PCR
contained 2 μl genomic template DNA and 8 μl reaction
mixtures containing 1 - 2 pmol primer, 50 mM KCl, 1.5
mM MgCl, 10 mM Tris-HCl, 0.2 mM dNTP and 0.25 U
Taq polymerase enzymes (Ampliqon). Thermocycling
parameters after denaturation at 95°C for 2 min were 24
- 34 cycles of 95°C for 30 sec, annealing temperature of
55°C for 30 sec, followed by an extension at 72°C for 45
sec. The last polymerization step was extended to 10
min. PCR products were added to buffer containing for-
mamide and labeled standard (ROX Std 400, Applied
Biosystems), and electrophoresed using an ABI Prism
3100 Genetic Analyzer (Applied Biosystems). The soft-
ware GENEMAPPER v.3.7 (http://www.applied-biosys-
tems.com) was used to score alleles, and all automated
allele calling were controlled for by manual reading.
Two positive controls were done in each run, and scor-
ing was repeated twice for several loci, and for all pri-
vate alleles, to check for consistency.
Quality control screenings were performed by testing

for null alleles, large allele drop-outs and scoring errors
in MICRO-CHECKER v.2.2.3 [144]. The program
TFPGA v.1.3 [145] was used for descriptive statistics
(number of alleles, observed and expected heterozygos-
ity). Allelic richness was compared among lakes and
spawning sites based on minimum sample size for each
comparison separately in FSTAT v.2.9.3.2 [146]. Depar-
ture from Hardy-Weinberg (HW) via separate one-tailed
tests for heterozygote excess and deficiency for each
locus in each site was tested by 60.000 randomizations,
and a linkage disequilibrium (LD) test between pairs of
loci across populations was performed by 450.000 per-
mutations, both in FSTAT. Local FST (diversity standar-
dized) and inbreeding coefficient F were calculated in
BIMR v.1.1 [44], including 95% C.I., the F-model [147]
and default values, except burn-in and sample size of
105 iterations, to ensure convergence.

Genetic structure and temporal stability
Possible genetic segregation among lakes and sites and
their significance were tested with the FST analogue θ
[148] and pairwise test of differentiation in FSTAT, and
by exact test (Raymond and Rousset 1995) in TFPGA,
all with 15.000 permutations. The estimated θ was cho-
sen since it out-performs other FST analogues in detect-
ing recently established reproductive isolation [149], and
marker neutrality was addressed by jackknifing FST esti-
mates over loci and populations. Standardized measures
of genetic differentiation (θ’ [150]) were calculated using
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the software RECODEDATA v.0.1 (http://www.bentle-
ydrummer.nl/software), to address FST estimates depen-
dence on the level of genetic variation. Finally,
STRUCTURE v.2.3.2 [39] was used to test whether
population differentiation was detected in a Bayesian
model based algorithm. The admixture locprior model
with correlated allele frequencies was run for K = 1 - 10
with a burn in of 200.000 MCMC steps, followed by
500.000 steps in 10 replicates.
Temporal substructure stability was tested for by pos-

sible year-class variation, sib-ship analyses, effective size
estimates and for isolation by distance (IBD). Allele fre-
quency variation was tested in a hierarchical fashion
(AMOVA; among versus within populations), and com-
pared with an AMOVA with segregated year-classes
(among versus within year-classes), to test for temporal
stability within spawning sites where age was available
(P1 - 3 and T1). Analyses were performed in ARLE-
QUIN v.3.1 [151], under the infinite alleles model
(IAM), standard model, unknown gametic phase and
104 permutations. Year-class variation was further con-
trolled for by testing pairwise differentiation among
year-classes, and excluding one-by-one year-class from
site wise θ tests (above). KININFOR v.1.0 [152] simu-
lated the power of applied markers and observed allele
frequencies to discriminate between unrelated and full-/
half-sib individuals. We ran the simulation with a prior
Dirichlet distribution of 1 for Δ0, Δ1 and Δ2, with a 0.05
confidence level, a precision level of 0.01 and 106 simu-
lated pairs of genotypes. Family structures within sites,
possibly affecting population differentiation estimates,
were evaluated in GENALEX v.6.2 [153] by the algo-
rithm of Lynch and Ritland [LRM; 154]. Normality of
pairwise relatedness was evaluated in JMP v.8.0 [155].
Contemporary methods were used for estimating

effective population size (Ne) and effective parental
population size (Nb) within lakes and spawning sites
from genetic data. Estimates of Ne using summary statis-
tics and approximate Bayesian statistics were computed
in ONESAMP [66], after 50.000 iterations, using prior
Ne of 4 - 600 for individual sites and 10 - 2000 for the
lake samples. Computations were repeated three times,
reporting the median result among tests. Runs with
prior values ranging from 2 - 1000 were compared to
check for consistency and convergence. Parental Nb was
similarly estimated based on linkage disequilibrium
using LDNE v.1.31 [67]. The model is assuming closed
populations, and is eliminating the possible bias on
small sample sizes. We used 0.02 as the lowest allele fre-
quency used in the computation to balance bias and
precision [156], including a parametric 95% C.I. in the
random mating model. The program BOTTLENECK,
v.1.2.02 [157] was used to test for recent bottlenecks
using the Wilcoxon test and mode-shift tests with 104

replications, with the two phase mutation model (TPM,
including 10% infinite alleles model) and the single step
mutation model (SMM).
Presence of IBD, indicating equilibrium conditions,

was addressed with a Mantel test of correlation between
pairwise θ and linear geographic distance among sites in
TFPGA, after 1000 iterations.

Migration and admixture
A combination of individual based maximum likelihood
methods and population based Bayesian methods were
employed to overcome the potential challenge of detect-
ing gene flow under low differentiation. First generation
migrants (F0) were in GENECLASS v.2.0 [158] identified
to evaluate migrants influence on genetic differentiation,
using the test statistics L_home/L_max and L_home
between lakes and spawning sites, respectively, to
account for un-sampled populations and maximizing
analyses power. Migrants between spawning sites were
assigned to the population with highest (> 5%) self-
assignment probability. Estimates were based on the
assignment criteria of Rannala and Mountain [159] not
assuming genetic equilibrium, and the re-sampling algo-
rithm of Paetkau et al. [160] after 10.000 simulations
and a threshold score of 5%. We applied IMMANC
v.5.0 [159], with 10.000 iterations to verify F0 estimates
and to assess the power of our dataset.
Population patterns of migration over the last genera-

tion within lakes and spawning sites were assessed in
BIMR. The method implements estimation of inbreeding
coefficients (F) to allow for departure from HW, and
assumes sampling after reproduction, but before migra-
tion. Information used is gametic disequilibrium, and
estimates are calculated using a Bayesian approach and
MCMC technique, including 95% highest posterior den-
sity intervals (HPDI). Burn-in and sample size of 105,
thinning 50, F-model and default values of pilot runs,
priors and incremental values were used, reporting
mode estimates from the run with lowest total deviance
and acceptance rate of 25 - 45% after 10 replicates to
ensure convergence [44,100,147]. Bayesian assignment
tests were then performed on individual level among
lakes and among all sampled spawning sites in GENE-
CLASS (with above settings). The random mid-lake
sample was similarly assigned to populations, to test for
temporal continuous distribution.
Patterns of recent admixed ancestry were finally evalu-

ated in BIMR to assess hybrid presence within spawning
sites with above settings on a population level. Hybrid
ancestry was only considered on population level,
including HPDI estimates, as hybrid detection under
admixture may be hampered by restricted power.
IMMANC was used to assess F1 ancestral origin on an
individual level. Multiplicity correction procedure of
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Benjamini and Hochberg was used, balancing the risk of
Type 1 and Type 2 errors at a = 5% [FDR correction;
45].
Forward modeling of population differentiation was

performed with EASYPOP v.2.0.1. [161] to evaluate if
genetic drift could cause observed differentiation pat-
terns alone, and for power evaluation. Simulations were
performed with variation in gene flow (0.01 - 0.99), and
Ne (30 - 90), for 5 populations in 20 generations follow-
ing panmixia (m = 1.0) with maximum variation and 15
allelic states, assuming random mating, equal sex ratio
and an island migration model. Observed pairwise popu-
lation differentiation from our sample was compared
with matrix scenarios of migration and Ne indicating
similar FST estimates (above) from simulations. Ten
independent replicates were obtained for the most likely
model to address simulation variation. Similar backward
modeling was run in SIMCOAL2 [162] to test the likeli-
hood of the drift model.

Additional material

Additional file 1: Summary statistics. Sample sites, number of analyzed
individuals (n), number of amplified individuals (N), number of alleles
(Nall), expected and observed (direct count) heterozygosity (He and Ho).
Significant departures from HW (P < 0.05) within sites after FDR
correction are marked *.

Additional file 2: Coalescent simulated population differentiation.
Backward simulations in SIMCOAL2 supporting the findings of genetic
drift as a contemporary driver for observed site fidelity.
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