436 research outputs found
Development of a data-driven model for spatial and temporal shallow landslide probability of occurrence at catchment scale
Open access funding provided by Universita degli Studi di Pavia within the CRUI-CARE Agreement. This work has been in the frame of the ANDROMEDA project, which has been supported by Fondazione Cariplo, grant no. 2017-0677.We thank the anonymous reviewers for their contributions in
improving the paper. We thank Beatrice Corradini for the help in
the collection of rainfall data and of shallow landslide events.A combined method was developed to forecast the spatial and the temporal probability of occurrence of rainfall-induced shallow landslides over large areas. The method also allowed to estimate the dynamic change of this probability during a rainfall event. The model, developed through a data-driven approach basing on Multivariate Adaptive Regression Splines technique, was based on a joint probability between the spatial probability of occurrence (susceptibility) and the temporal one. The former was estimated on the basis of geological, geomorphological, and hydrological predictors. The latter was assessed considering short-term cumulative rainfall, antecedent rainfall, soil hydrological conditions, expressed as soil saturation degree, and bedrock geology. The predictive capability of the methodology was tested for past triggering events of shallow landslides occurred in representative catchments of Oltrepò Pavese, in northern Italian Apennines. The method provided excellently to outstanding performance for both the really unstable hillslopes (area under ROC curve until 0.92, true positives until 98.8%, true negatives higher than 80%) and the identification of the triggering time (area under ROC curve of 0.98, true positives of 96.2%, true negatives of 94.6%). The developed methodology allowed us to obtain feasible results using satellite-based rainfall products and data acquired by field rain gauges. Advantages and weak points of the method, in comparison also with traditional approaches for the forecast of shallow landslides, were also provided.Universita degli Studi di Pavia within the CRUI-CARE AgreementFondazione Cariplo
2017-067
New objects in old structures: The Iron Age hoard of the Palacio III megalithic funerary complex (Almadén de la Plata, Seville, Spain)
Cultural contact, exchange and interaction feature high in the list of challenging topics of current research on European Prehistory. Not far off is the issue of the changing role of monuments in the making and maintaining of key cultural devices such as memory and identity. Addressing both these highly-debated issues from a science-based perspective, in this paper we look at an unusual case study set in southern Iberia and illustrate how these archaeological questions can benefit from robust materials-science approaches.We present the contextual, morphological and analytical study of an exceptional Early Iron Age hoard composed of a number of different (and mostly exotic) materials such as amber, quartz, silver and ceramic. This hoard, found under the fallen orthostat of a megalithic structure built at least 2000 years earlier, throws new light on long-distance exchange networks and the effect they could have had on the cultural identities and social relations of local Iberian Early Iron Age communities. Moreover, the archaeometric study reveals how diverse and distant the sources of these item are (Northern Europe to Eastern and Western Mediterranean raw materials, as well as local and eastern technologies), therefore raising questions concerning the social mechanisms used to establish change and resistance in contexts of colonial encounter
Alpine endemic spiders shed light on the origin and evolution of subterranean species
We designed a comparative study to unravel the phylogeography of two Alpine endemic spiders characterized by a different degree of adaptation to subterranean life: Troglohyphantes vignai (Araneae, Linyphiidae) and Pimoa rupicola (Araneae, Pimoidae), the latter showing minor adaptation to hypogean life. We sampled populations of the model species in caves and other subterranean habitats across their known geographical range in the Western Alps. By combining phylogeographic inferences and Ecological Niche Modeling techniques, we inferred the biogeographic scenario that led to the present day population structure of the two species. According to our divergent time estimates and relative uncertainties, the isolation of T. vignai and P. rupicola from their northern sister groups was tracked back to Middle-Late Miocene. Furthermore, the fingerprint left by Pleistocene glaciations on the population structure revealed by the genetic data, led to the hypothesis that a progressive adaptation to subterranean habitats occurred in T. vignai, followed by strong population isolation. On the other hand, P. rupicola underwent a remarkable genetic bottleneck during the Pleistocene glaciations, that shaped its present population structure. It seems likely that such shallow population structure is both the result of the minor degree of specialization to hypogean life and the higher dispersal ability characterizing this species. The simultaneous study of overlapping spider species showing different levels of adaptation to hypogean life, disclosed a new way to clarify patterns of biological diversification and to understand the effects of past climatic shift on the subterranean biodiversity
The role of morphological evolution and prey specialization in adaptive radiations: The spider genus Dysdera in the Canary Islands
Non peer reviewe
Advances in the systematics of the spider genus Troglohyphantes (Araneae, Linyphiidae)
With 128 described species and five subspecies, the spider genus Troglohyphantes (Araneae, Linyphiidae) is a remarkable example of species diversification in the subterranean environment. In this paper, we conducted a systematic revision of the Troglohyphantes species of the Italian Alps, with a special focus on the Lucifuga complex, including the description of two new species (T. lucifer sp. nov. and T. apenninicus n. sp.). In addition, we provided new diagnostic drawings of the holotype of T. henroti (Henroti complex) and established three new synonymies within the genus. The molecular analysis of the animal DNA barcode confirms the validity of this method of identification of the Alpine Troglohyphantes and provides additional support for the morphology based species complexes. Finally, we revised the known distribution range of additional Troglohyphantes species, as well as other poorly known alpine cave-dwelling spiders
New acyclic diaminocarbenes cycloplatinated(II) complexes: synthesis, photophysical properties and cytotoxic activity
Among all phosphorescent molecules, cyclometalated platinum(II) complexes have receivedconsiderable attention because of their photophysical properties and potential applications asdopants in OLEDs, LECs, photocatalysts or bioimaging. Another research of relevant interest istheir employment as anticancer drugs with a broader spectrum of action against differenttumours and fewer side effects than the well-known cisplatin. For that reason, the choice of thecyclometalated group and ancillary ligands play an important role not only in emissive behaviorbut also on the biological activity.1N-acyclic diaminocarbenes (ADCs) show several appealing characteristics; they display strongelectron-donating ability with structural flexibility and can be easily prepared. However, thereare only a few examples of ADC-platinum complexes used as perspective metal-based drugs inthe literature.2In this contribution, we describe a series of new luminescent ADC cycloplatinated(II) compoundsfeaturing 2-(2,4-difluorophenyl)pyridine (3) and 2-phenylquinoline (4) cyclometalated groups[Pt(C^N)Cl{C(NHXyl)(NHR)}] (R = Pr a, Benzyl b) obtained by nucleophilic addition of primarypropyl and benzyl amines, to the isocyanide ligand of the corresponding precursors[Pt(C^N)Cl(CNXyl)] (1, 2) recently reported by our group.3 Their optical properties haveexamined and interpreted with the aid of DFT/TD-DFT calculations and, finally, all newcompounds have been screened for their cytotoxic activity against various cancer cell lines
Uncovering the complex genetics of human temperament
Experimental studies of learning suggest that human temperament may depend on the molecular mechanisms for associative conditioning, which are highly conserved in animals. The main genetic pathways for associative conditioning are known in experimental animals, but have not been identified in prior genome-wide association studies (GWAS) of human temperament. We used a data-driven machine learning method for GWAS to uncover the complex genotypic-phenotypic networks and environmental interactions related to human temperament. In a discovery sample of 2149 healthy Finns, we identified sets of single-nucleotide polymorphisms (SNPs) that cluster within particular individuals (i.e., SNP sets) regardless of phenotype. Second, we identified 3 clusters of people with distinct temperament profiles measured by the Temperament and Character Inventory regardless of genotype. Third, we found 51 SNP sets that identified 736 gene loci and were significantly associated with temperament. The identified genes were enriched in pathways activated by associative conditioning in animals, including the ERK, PI3K, and PKC pathways. 74% of the identified genes were unique to a specific temperament profile. Environmental influences measured in childhood and adulthood had small but significant effects. We confirmed the replicability of the 51 Finnish SNP sets in healthy Korean (90%) and German samples (89%), as well as their associations with temperament. The identified SNPs explained nearly all the heritability expected in each sample (37-53%) despite variable cultures and environments. We conclude that human temperament is strongly influenced by more than 700 genes that modulate associative conditioning by molecular processes for synaptic plasticity and long-term memory
Recommended from our members
Predicting Progression in Parkinson's Disease Using Baseline and 1-Year Change Measures.
BackgroundImproved prediction of Parkinson's disease (PD) progression is needed to support clinical decision-making and to accelerate research trials.ObjectivesTo examine whether baseline measures and their 1-year change predict longer-term progression in early PD.MethodsParkinson's Progression Markers Initiative study data were used. Participants had disease duration ≤2 years, abnormal dopamine transporter (DAT) imaging, and were untreated with PD medications. Baseline and 1-year change in clinical, cerebrospinal fluid (CSF), and imaging measures were evaluated as candidate predictors of longer-term (up to 5 years) change in Movement Disorders Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) score and DAT specific binding ratios (SBR) using linear mixed-effects models.ResultsAmong 413 PD participants, median follow-up was 5 years. Change in MDS-UPDRS from year-2 to last follow-up was associated with disease duration (β= 0.351; 95% CI = 0.146, 0.555), male gender (β= 3.090; 95% CI = 0.310, 5.869), and baseline (β= -0.199; 95% CI = -0.315, -0.082) and 1-year change (β= 0.540; 95% CI = 0.423, 0.658) in MDS-UPDRS; predictors in the model accounted for 17.6% of the variance in outcome. Predictors of percent change in mean SBR from year-2 to last follow-up included baseline rapid eye movement sleep behavior disorder score (β= -0.6229; 95% CI = -1.2910, 0.0452), baseline (β= 7.232; 95% CI = 2.268, 12.195) and 1-year change (β= 45.918; 95% CI = 35.994,55.843) in mean striatum SBR, and 1-year change in autonomic symptom score (β= -0.325;95% CI = -0.695, 0.045); predictors in the model accounted for 44.1% of the variance.ConclusionsBaseline clinical, CSF, and imaging measures in early PD predicted change in MDS-UPDRS and dopamine-transporter binding, but the predictive value of the models was low. Adding the short-term change of possible predictors improved the predictive value, especially for modeling change in dopamine-transporter binding
- …