147 research outputs found

    Activity of lactoperoxidase when adsorbed on protein layers

    Get PDF
    Lactoperoxidase (LPO) is an enzyme, which is used as an antimicrobial agent in a number of applications, e.g., food technology. In the majority of applications LPO is added to a homogeneous product phase or immobilised on product surface. In the latter case, however, the measurements of LPO activity are seldom reported. In this paperwe have assessed LPO enzymatic activity on bare and protein modified gold surfaces by means of electrochemistry. It was found that LPO rapidly adsorbs to bare gold surfaces resulting in an amount of LPO adsorbed of 2.9mg/m2. A lower amount of adsorbed LPO is obtained if the gold surface is exposed to bovine serum albumin, bovine or human mucin prior to LPO adsorption. The enzymatic activity of the adsorbed enzyme is in general preserved at the experimental conditions and varies only moderately when comparing bare gold and gold surface pretreated with the selected proteins. The measurement of LPO specific activity, however, indicate that it is about 1.5 times higher if LPO is adsorbed on gold surfaces containing a small amount of preadsorbed mucin in comparison to the LPO directly adsorbed on bare gold

    Effect of nonionic and amphoteric surfactants on salivary pellicles reconstituted in vitro

    Get PDF
    Surfactants are important components of oral care products. Sodium dodecyl sulfate (SDS) is the most common because of its foaming properties, taste and low cost. However, the use of ionic surfactants, especially SDS, is related to several oral mucosa conditions. Thus, there is a high interest in using non‐ ionic and amphoteric surfactants as they are less irritant. To better understand the performance of these surfactants in oral care products, we investigated their interaction with salivary pellicles i.e., the proteinaceous films that cover surfaces exposed to saliva. Specifically, we focused on pentaethylene glycol monododecyl ether (C12E5) and cocamidopropyl betaine (CAPB) as model nonionic and amphoteric surfactants respectively, and investigated their interaction with reconstituted salivary pellicles with various surface techniques: Quartz Crystal Microbalance with Dissipation, Ellipsometry, Force Spectroscopy and Neutron Reflectometry. Both C12E5 and CAPB were gentler on pellicles than SDS, removing a lower amount. However, their interaction with pellicles differed. Our work indicates that CAPB would mainly interact with the mucin components of pellicles, leading to collapse and dehydration. In contrast, exposure to C12E5 had a minimal effect on the pellicles, mainly resulting in the replacement/solubilisation of some of the components anchoring pellicles to their substrate

    A comparison between the structures of reconstituted salivary pellicles and oral mucin (MUC5B) films

    Get PDF
    Hypothesis: Salivary pellicles i.e., thin films formed upon selective adsorption of saliva, protect oral surfaces against chemical and mechanical insults. Pellicles are also excellent aqueous lubricants. It is generally accepted that reconstituted pellicles have a two-layer structure, where the outer layer is mainly composed of MUC5B mucins. We hypothesized that by comparing the effect of ionic strength on reconstituted pellicles and MUC5B films we could gain further insight into the pellicle structure. Experiments: Salivary pellicles and MUC5B films reconstituted on solid surfaces were investigated at different ionic strengths by Force Spectroscopy, Quartz Crystal Microbalance with Dissipation, Null Ellipsometry and Neutron Reflectometry. Findings: Our results support the two-layer structure for reconstituted salivary pellicles. The outer layer swelled when ionic strength decreased, indicating a weak polyelectrolyte behavior. While initially the MUC5B films exhibited a similar tendency, this was followed by a drastic collapse indicating an interaction between exposed hydrophobic domains. This suggests that mucins in the pellicle outer layer form complexes with other salivary components that prevent this interaction. Lowering ionic strength below physiological values also led to a partial removal of the pellicle inner layer. Overall, our results highlight the importance that the interactions of mucins with other pellicle components play on their structure

    Hydration of Thermally Denatured Lysozyme Studied by Sorption Calorimetry and Differential Scanning Calorimetry

    No full text
    We have studied hydration (and dehydration) of thermally denatured hen egg lysozyme using sorption calorimetry. Two different procedures of thermal denaturation of lysozyme were used. In the first procedure the protein was denatured in an aqueous solution at 90 °C, in the other procedure a sample that contained20% of water was denatured at 150 °C. The protein denatured at 90 °C showed very similar sorption behavior to that of the native protein. The lysozyme samples denatured at 150 °C were studied at several temperatures in the range of 25-60 °C. In the beginning of sorption, the sorption isotherms of native and denatured lysozyme are almost identical. At higher water contents, however, the denatured lysozyme can absorb a greater amount of water than the native protein due to the larger number of available sorption sites. Desorption experiments did not reveal a pronounced hysteresis in the sorption isotherm of denatured lysozyme (such hysteresis is typical for native lysozyme). Despite the unfolded structure, the denatured lysozyme binds less water than does the native lysozyme in the desorption experiments at water contents up to 34 wt %. Glass transitions in the denatured lysozyme were observed using both differential scanning calorimetry and sorption calorimetry.Partial molar enthalpy of mixing of water in the glassy state is strongly exothermic, which gives rise to a positive temperature dependence of the water activity. The changes of the free energy of the protein induced by the hydration stabilize the denatured form of lysozyme with respect to the native form

    Hydration of lysozyme : the protein-protein interface and the enthalpy-entropy compensation

    No full text
    Water sorption isotherms of proteins are usually interpreted with such models as BET or GAB that imply the formation of multilayers at solid-gas interface. However, this approach is not applicable to globular proteins such as humid lysozyme where a solid-gas interface does not exist. Another popular approach is the D’Arcy-Watt model, where besides the formation of multilayers the heterogeneity of energies of sorption sites of proteins is taken into account. Here we present sorption calorimetric data on the hydration of lysozyme that confirms the existence of the heterogeneity. The magnitude of the heterogeneity is, however, lower than one can expect on the basis of the existence of a solid-gas interface. Moreover, the calorimetric data show a strong enthalpy-entropy compensation that leads to almost constant effective free energy of hydration in the activity range normally used for fitting the data to sorption models. This allows the use of the Langmuir equation for the fitting of the initial part of the sorption isotherm of lysozyme. Assuming the formation of a monolayer of water at the protein-protein interface, one can estimate the size of the lysozyme molecules from the sorption isotherm. The result of this estimation is in good agreement with the structural data on lysozyme, which supports the presented approach
    corecore