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Abstract 

The structural and mechanical properties of thin films generated from two types of mucins, 

namely bovine submaxillary mucin (BSM) and porcine gastric mucin (PGM) in aqueous 

environment were investigated with several bulk and surface analytical techniques. Both mucins 

generated hydrated films on hydrophobic polydimethylsiloxane (PDMS) surfaces from 
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spontaneous adsorption arising from their amphiphilic characteristic. But, BSM formed more 

elastic films than PGM at neutral pH condition. This structural difference was manifested from 

the initial film formation processes to the responses to shear stresses applied to the films. 

Acidification of environmental pH led to strengthening the elastic character of BSM films with 

increased adsorbed mass, whereas an opposite trend was observed for PGM films. We propose 

that this contrast originates from that negatively charged motifs are present for both the central 

and terminal regions of BSM molecule, whereas a similar magnitude of negative charges is 

localized at the termini of PGM molecule. Given that hydrophobic motifs acting as anchor are 

also localized in the terminal region, electrostatic repulsion between anchoring units of PGM 

molecules on nonpolar PDMS surface leads to weakening of the mechanical integrity of the 

films. 

 
1. Introduction 

Mucins are the major macromolecular component of mucus gels and the glycocalyx covering 

the epithelial lining. Structurally, mucins are determined to contain unglycosylated N- and C-

terminal domains and a heavily glycosylated central domain.1-3 One of the major biological 

functions of mucus is to act as physical barrier that protects the epithelium from abrasions and 

hinders pathogens from entering the tissue.2,4,5 Additionally, cell membrane-tethered mucins 

have also been shown to play a role in cell signaling via tyrosine phosphorylation triggering, 

among other things, pathways involved in cellular motility and adhesion.6 

Apart from being a key component of mucus, mucins are employed to tailor various surface 

and interfacial properties of engineering systems too, such as surface hydrophilization,7 

antifouling,8-11 surface coating models for drug delivery systems,12 and lubrication.13-18 Many of 

these studies employed hydrophobic substrates for the adsorption of mucins from aqueous 
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solutions. Local glycosylation of mucins in the central region along a long polypeptide backbone 

imparts distinct hydrophilic and hydrophobic characteristics at the central and terminal regions, 

respectively. Thus, mucins can behave as macromolecular surfactants at the interface of 

water/hydrophobic substrates. These features are considered to be shared between different 

mucins. However, mucins are known to be highly adapted to the environment of their origin and 

mucins with different biological origins may display different compositional and structural 

features and, therefore, different interfacial properties. 

The objective of this study is to characterize the structural and mechanical features of films 

generated from two different types of mucins, namely bovine submaxillary mucin (BSM) and 

porcine gastric mucin (PGM). A hydrophobic surface, namely poly(dimethylsiloxane) (PDMS) 

was employed as substrate since mucin films are expected to form in a straightforward manner in 

aqueous environment as mentioned above. Additionally, low elasticity of PDMS (elasticity 

modulus, 1 – 2 MPa range) allows for soft contacts, which have high relevance in bioengineering 

applications. BSM and PGM have been employed in a broad range of bioengineering interface 

science studies,7-17 partly due to their commercial availability. However, no criteria of selecting 

one type of mucin, e.g. BSM7-12,16,17 or the other, i.e. PGM,13-15 has been established in literature. 

In fact, even their differences as coating materials have not been addressed in an explicit manner 

to date. In this study, an array of bulk and surface analytical techniques was employed with the 

aim to elucidate the differences between the two types of mucin films. In the design of this study, 

the following points were particularly taken into account. Firstly, recent studies have shown that 

impurities present in commercially available mucins may have a significant impact on their 

biophysical properties.16,19,20 Moreover, the nature and amount of these impurities can vary 

between different batches. Thus, it would be important to keep the amount of impurities as low 
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as possible. For this reason, an additional purification step i.e., anion exchange chromatography, 

was performed on commercially available mucin samples.19 Secondly, as mucins are polyanionic 

macromolecules with various acidic moieties, intra- and intermolecular interactions can be 

controlled by varying ambient pH and it can directly affect the structural and mechanical 

characteristics of the films. Thus, the structural and mechanical characteristics of the two mucin 

films were characterized at both neutral and acidic pH, from the film formation stage to exposure 

to shear stresses.  

 

2. Experimental 

2.1 Mucins and buffers 

BSM (Type I-S, M3895) and PGM (Type III, M1778) were purchased from Sigma Aldrich 

(Brøndby, Denmark). BSM was purified by means of anion exchange chromatography as 

described in detail in a previous study.19 PGM was purified according to the same procedure with 

BSM.19 However, due to PGM’s higher tendency to form aggregates, additional sterile filtration 

was performed through 1.2 µm sterile filters (hydrophilic polyethersulfone sterile filters; Pall 

Corporation, Cornwall, UK) after 5 µm sterile filters, three times each, to clarify the solution. 

Fractions containing mucins were analyzed by SDS-PAGE and CBB staining, pooled, dialyzed 

against milliQ grade water and subsequently freeze-dried. The chromatogram (Figure S1) and 

SDS-PAGE analysis (Figure S2) of PGM can be found in the Electronic Supplementary 

Information. All samples were stored at 20 °C and desiccated prior to use. Hereafter, “BSM” 

and “PGM” exclusively refer to the mucins that were further purified according to the procedures 

described above. In cases where the mucins received from the manufacturer prior to the 
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purification are referred, they are denoted as “arBSM” or “arPGM” (to represent “as-received” 

BSM or PGM).  

A citrate-phosphate buffer system was employed in order to control the pH of the buffer 

solutions either at pH 2.4 (0.01 M citrate/0.001 M Na-phosphate) or at pH 7.4 (0.0001 M 

citrate/0.02 M Na-phosphate) and NaCl to a physiological concentration of 150 mM was added. 

This buffer system was used all the experiments in this study except for CD spectroscopy where 

a slight adjustment was necessary (see section 2.3). BSM and PGM samples were dissolved in 

either buffer prior to use on a nutating mixer to a final concentration of 1 mg/mL, and all the 

experiments throughout the study were carried out at this concentration. All chemicals used in 

this study were of laboratory grade and purchased from Sigma Aldrich (Brøndby, Denmark). 

 

2.2 Zeta () Potential and Dynamic Light Scattering (DLS) 

Samples were prepared in 0.22 µm-filtered buffers and zeta () potentials and hydrodynamic 

size distribution were measured using a Malvern Zetasizer Nano ZS two angle particle and 

molecular size analyzer (Malvern Instruments, Worcestershire, UK). The light source is a He-Ne 

laser at 633 nm and the temperature was set at 25 °C. Disposable folded capillary cell 

(DTS1070) and Semi-micro cuvettes (PMMA, Plastibrand) were employed for zeta () 

potentials and DLS measurements, respectively. Each sample was measured in triplicates. For 

the case of DLS, the Malvern Zetasizer software (Version 7.02) was used to analyze the obtained 

data. All DLS data were plotted according to the intensity distribution of the hydrodynamic 

diameter (Dh). 

 

2.3 Circular Dichroism (CD) Spectroscopy 
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Far-UV CD spectra of BSM and PGM solutions were acquired in the region from 240 to 195 

nm by employing a rectangular quartz cuvette with 0.5 mm path length (Hellma GmbH & Co. 

KG, Müllheim, Germany) using Chirascan spectrophotometer (Applied Photophysics Ltd., 

Surrey, UK). Due to signal interference, the buffer solutions were diluted 1:2 with milliQ grade 

water. The pHs of the diluted buffers were measured to be pH 3 and 7.4, respectively. Far-UV 

CD spectra were recorded with a step size of 1 nm, bandwidth of 1 nm, and time-per-point value 

of 1.5 s. One spectrum was obtained from the averaging of three traces. All samples were 

measured in triplicate and averaged again, and any background signal from buffer was 

subtracted. 

 

2.4 Optical Waveguide Lightmode Spectroscopy (OWLS) 

OWLS is based on grating-assisted in-coupling of a He-Ne laser into a planar waveguide 

coating (200-nm thick Si0.25Ti0.75O2 waveguiding layer on 1 mm thick AF 45 glass 

(Microvacuum Ltd, Budapest, Hungary)). Adsorption of biomolecules from bulk liquid to the 

interfacing solid surface is measured by monitoring the changes in the refractive index at the 

vicinity of the solid-liquid interface. This method is highly sensitive out to a distance of ~200 nm 

from the surface of the waveguide. Experiments were carried out using the OWLS 210 biosensor 

system (Microvacuum Ltd, Budapest, Hungary). 

In order to keep the substrates for OWLS, QCM-D, and the tribology studies consistent, 

waveguides were coated with a layer of PDMS. The waveguides were spin-coated at 2500 rpm 

for 15 s initially with an ultrathin layer (ca. 24.3 ± 3.1 nm, determined by scratch test using 

atomic force microscopy in tapping mode) of polystyrene (Sigma Aldrich, St. Louis, MO) 

dissolved in HPLC grade toluene at 6 mg/mL. The base and curing agent of a commercial 

silicone elastomer (Sylgard 184 elastomer kit, Dow Corning, Midland, MI) were dissolved in 
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hexane at a ratio of 10:3 (final concentration, 0.5 % w/w). A subsequent ultrathin layer of PDMS 

(ca. 16.4 ± 0.2 nm)21 was then added by spin-coating at 2 000 rpm for 25 s and cured in an oven 

at 70 °C overnight. 

The PDMS-coated waveguide was exposed to the appropriate buffer prior to sample injection 

until a stable baseline was obtained. A programmable syringe pump (Model 1000-NE, New Era 

Pump Systems, Inc., NY) was used to pump buffer solutions through a flow-cell over the OWLS 

waveguide surface. Sample (100 µL) was then injected via a loading loop. Upon observing 

surface adsorption, the pump was stopped so that the BSM or PGM molecules could adsorb onto 

the surface under static conditions. After 10 min, the flow cell was rinsed with the appropriate 

buffer by restarting pumping. The adsorbed mass density data were calculated according to de 

Feijter’s equation.22 The experiment was repeated two or three times for each mucin at either pH. 

A refractive index increment (dn/dc) value of 0.150 cm3/g was used for the calculation of the 

adsorbed masses.23 

 

2.5 Quartz Crystal Microbalance with Dissipation (QCM-D) 

QCM-D measurements were performed by using an E4 system (Q-Sense AB, Sweden). A 

detailed description of the technique and its basic principles can be found elsewhere.24 Gold-

coated quartz sensors (Q-sense AB, Sweden) were coated with an additional PDMS layer in the 

same manner as described for OWLS waveguide chips. Solutions were supplied into the QCM-D 

chamber using an Ismatec peristaltic pump IPC-N 4 at a flow rate of 0.2 mL∙min-1. Buffer 

solution was first injected into the chamber until a stable baseline was observed. Then, mucin 

solution was flowed through the chamber until significant adsorption was observed. At this point 

the flow was stopped and the mucins were left to adsorb for 10 min under non-flow conditions. 
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Finally, the cell was rinsed for 5 min with the corresponding buffer solution and then stabilized 

for ca. 10 min under non-flow conditions. Each experiment was performed twice. During the 

experiments, shifts in frequency, Δfn, and dissipation factor, ΔDn, for the different overtones (n = 

3, 5, 7, 9, and 11) were monitored. 

In QCM-D experiments, the PDMS-coated sensors were oscillated by applying an alternating-

current voltage across it. The raw experimental data provided by QCM-D consist of shifts in the 

resonance frequencies of the sensor, Δfn where n is the overtone number, and in the dissipation 

factor, ΔDn, which is proportional to the ratio between the dissipated and the stored energy 

during a single oscillation. Adsorption of a certain amount of mass onto the sensor surface leads 

to a decrease in the frequency of the resonance overtones,25 although it is not straightforward to 

establish the correct relationship between both quantities when dealing with viscoelastic 

materials.26 Additionally, the coupled mass sensed in QCM-D experiments includes that of the 

adsorbed film and that of the coupled solvent.27,28 Thus, it is often referred as “wet mass”. QCM-

D also provides information on the viscoelasticity of the adsorbed films. This is usually inferred 

from dissipation shifts. However, it is not straightforward to quantify the viscoelastic character 

as dissipation shifts are associated not only with the viscoelasticity of the adsorbed material but 

also with changes in wet mass.29 Still, a simple way to qualitatively describe the viscoelasticity 

of the adsorbed material is to analyze the ratio between frequency and dissipation shifts, ΔD/Δf, 

higher absolute values suggesting a higher viscous character.30  

  

2.6 Pin-on-Disk (PoD) Tribometry 

The lubricating properties of BSM and PGM films were investigated with a pin-on-disk 

tribometer (CSM, Peseux, Switzerland). This approach is based on a loaded pin forming a sliding 
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contact with a disk. A pin on a disk contact was generated in mucin solutions (1 mg/mL) in 

variation of type (BSM or PGM) and pH (7.4 or 2.4). The load on the pin was controlled by the 

application of dead weight (1 N). The friction forces between them were measured at 

incrementing speeds of the disk from 0.25 mm/s to 100 mm/s. Thus, the coefficient of friction 

(µ) vs. speed plots were acquired. Disk rotation was enabled by a motor beneath the disk while 

the pin remained stationary. Friction generated during sliding contacts was monitored by a strain 

gauge. Friction forces data were acquired over 20 rotations at a fixed radius of 5 mm. A PDMS-

PDMS tribopair was used for the experiments. PDMS was prepared by thoroughly mixing base 

fluid and crosslinker of a Sylgard 184 elastomer kit (Dow Corning, Midland, MI) at a ratio of 

10:1. Gentle vacuum was applied to remove air bubbles generated during mixing. The disks were 

prepared by casting the PDMS mixture into a home-machined aluminum plate with flat wells 

designed to the dimensions (30 mm diameter  5 mm thickness) of the tribometer. A 96 

microwell plate (NUNCLON Delta Surface, Roskilde, Denmark) with a hemispherical end ( = 

6 mm) was used as a mold for casting the pin. The PDMS mixtures were cured at 70 °C 

overnight.15,17 

 

3. Results and Discussion 

3.1 Charge characteristics and hydrodynamic size and charge characteristics of mucins:  

potential and DLS 

In Figure 1, the  potentials and hydrodynamic diameter, Dh, distribution of BSM and PGM  

according to intensity at pH 7.4 and 2.4 are presented.  
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Figure 1. Hydrodynamic size, Dh, distribution of BSM (solid lines, blue for pH 7.4 and red for 
pH 2.4) and PGM (dotted lines, blue for pH 7.4 and red for pH 2.4) at neutral and acidic pH as 

characterized by DLS (intensity-weighted).  potentials of BSM and PGM solutions at both pHs 
are also presented. 

 

The  potentials of BSM and PGM showed negative values at both pH 7.4 and 2.4, although 

the magnitude has been greatly reduced at pH 2.4. This is due to the presence of acidic moieties 

and the protonation of carboxylic groups of sialic acid moieties at pH 2.4.  Despite slightly 

different values, BSM and PGM showed comparable  potentials at two pH conditions, which 

indicates that their overall charge characteristics are fairly similar. However, detailed distribution 

of charges over BSM and PGM molecules might clearly differ as will be more discussed below. 

An important feature in the distribution of Dh after the chromatographic purification of both 

mucins is that large species ranging from a few hundreds to thousands nm in Dh that were 

observed from arBSM or arPGM disappeared19 (Dh distributions for the mucin samples prior to 

the purification are shown in Figure S3, Supporting Information). Thus, in addition to 

minimizing non-mucinous protein “impurities” from the samples (see Figure S2), a second effect 

of the chromatographic purification in this study is to homogenize the size of mucin molecules. 

As a result, the absolute majority of Dh is less than 200 nm and 300 nm for BSM and PGM, 

respectively, and the Z-average Dh for BSM and PGM are 56.1  8.9 nm and 77.8  19.7 nm, 
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respectively, at pH 7.4. As shown in a previous study, the Dh of BSM was only twice as large as 

that of contour length on average.31 For this reason, while mucins are often depicted as highly 

coiled polymer chains in literature,32,33 the mucins in this study are better described as 

“dumbbell”-like shape in their conformations.13,14,34 For instance, a recent small angle x-ray 

scattering study has revealed that highly purified “Orthana” PGM displays double-globular comb 

structure with two globules of an average radius of 10 nm connected with the intramolecular 

chain of ca. 48 nm.35  At pH 7.4, although the maximum peak positions for BSM and PGM are 

close to each other, 50.7 nm and 58.8 nm, respectively, the distribution of Dh of PGM is slightly, 

yet clearly higher than that of BSM. Upon lowering pH to 2.4, the distribution of Dh of both 

mucins is somewhat shifted to the right (larger values). Shifting pH from 7.4 to 2.4 is expected to 

protonate the carboxylic acid moieties in mucins as mentioned above, and it can result in two 

opposing effects in their hydrated sizes. Firstly, due to the reduced intramolecular electrostatic 

repulsion, which is consistent with lower  potential values (Figure 1), Dh can be reduced at low 

pH.31 This is a general trend for all charged macromolecules. Secondly, because of the reduced 

tendency to shield hydrophobic moieties at the unglycosylated terminal domains at low pH, the 

interaction between exposed hydrophobic patches and consequent aggregation may occur.36 

Figure 1 shows that a slight decrease in Dh with decreasing pH indeed occurs in the main peak of 

BSM (the most probable peak position shifted from 58.8 nm at pH 7.4 to 50.7 nm at pH 2.4), 

although the overall increase of Dh at higher range (> 80 nm) is also observed. In contrast, PGM 

shows an increase in the distribution of Dh only upon shifting pH from 7.4 to 2.4. This difference 

is ascribed to more abundant presence of negatively charged moieties in the central, glycosylated 

regions of BSM compared to PGM;18 the density of negatively charged carbohydrate moieties in 

the oligosaccharides in BSM (~30% of total carbohydrate mass is sialic acid) has been reported 
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to be higher than in PGM (2-9% sulphate terminal group modifications) according to previous 

analysis of the two mucins. 37-41,42 Another study on the compositional analysis of “Orthana” 

PGM indicated the complete absence of charged glycans.34 The manufacturer’s estimation on the 

amounts of bound sialic acids is also  substantially higher for BSM (ca. 9-17%) than PGM (0.5-

1.5%) of the total mucin masses. As the overall size of mucins are determined mainly by the 

central, glycosylated region than terminal regions,4,19 higher density of negatively charged motifs 

in the former for BSM can be directly related to more sensitive changes of Dh distribution 

according to pH change, even though  potentials of the two mucins were determined to be 

comparable at both pH values (Figure 1).  

 

3.2 Conformation of BSM and PGM: CD spectroscopy 

The secondary structures of BSM and PGM were investigated by far UV CD spectroscopy at 

pH 3 and 7.4 as shown in Figure 2. As mentioned above, for the acidic buffer, the pH was raised 

to ~3 from the initially targeted pH of 2.4 due to signal interferences. 

 

 

Figure 2. Far-UV CD spectra (260 nm to 195 nm) for BSM (solid lines) and PGM solutions 
(dash lines) at pH 7.4 (blue) and pH ~3 (red).  
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The far-UV spectra showed that both BSM and PGM lacked distinct and well defined secondary 

structures, such as α-helices, β-sheets, or β-turns. 43,44 This is hardly surprising as mucins are 

mainly made up of the heavily glycosylated ‘Proline-Threonine-Serine’ (PTS) repeat central 

domains, and the stiffness of glycans tend to hinder the formation of highly ordered structures.1, 

44-47 Only the N- and C-terminal domains have been assigned to contain structural motifs 

determined from the peptide sequence, including cysteine knots, CysD domains and Von 

Willebrand factor binding domains that are involved in mucin-mucin interactions.1,5,45,48,49 

However, the contribution from them to CD spectra signals is not significant due to the 

dominance of the glycosylated central domain. The far-UV CD spectra of BSM showed a weak, 

yet distinct local positive maximum at ca. 218 nm and a strong negative minimum at ca. 201 nm. 

Meanwhile, PGM shows only a single large negative minimum at ca. 207 nm (Figure 2). The 

features presented by BSM in the far UV range are quite similar to those of poly(Pro) II helices, 

even though the exact peak positions are somewhat shifted from those observed from poly(Pro) 

II peptides (where the major peak minimum is observed at 196 nm). 44,50 A most classical view 

on the secondary structure of proteins as characterized with CD spectroscopy was that any 

features other than α-helices, β-sheets, or β-turns were grouped together and assigned as “random 

coil” structure. However, systematic studies with well-prepared poly(Pro) II peptides have 

shown that polypeptides showing the signals in this region are not entirely disordered, but 

possess helices arising from proline residues. 50,51 With the presence of a significant number of 

proline residues in the primary structure of BSM, it is reasonable to propose that secondary 

structural features pertaining to poly(Pro) II peptides is present in the far-UV CD spectra. The 

shift of the characteristic peaks compared to poly(Pro) II peptides is ascribed to the heavy 

glycosylation and further stiffening of the structure of BSM. It is rather intriguing that the far-
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UV CD spectra of PGM is quite different from that of BSM and do not display features of poly 

(Pro) II helical motifs, although PGM also contains central domains made up of the glycosylated 

tandem repeat PTS-domains. This is also likely related to the glycosylation of the PTS region of 

PGM, yet different from that of BSM in terms of both types of glycans and the extent, as 

mentioned above. For instance, the presence of negatively charged groups in the vicinity of 

nearly every third amino acid residue of BSM may impose further steric constraints on the φ and 

ψ torsion angles in the polypeptide backbone in addition to the rigidity conferred by proline 

residues.51 In comparison, the lower charge density in the central domains of PGM offers 

relatively higher rotational freedom in the apomucin. It is therefore likely that intramolecular 

repulsion between the negatively charged oligosaccharides force BSM into a more ordered 

structure in comparison to PGM. 37-41,52 

For both BSM and PGM, acidification does not seem to affect the far-UV CD spectra, which 

are dominated the central PTS-domain. This  implies that possible conformational changes that 

occur due to the acidification do not alter the prevalent random coil secondary structure of the 

proteins. This can be explained by relatively small and homogeneous size distributions of both 

mucins after the additional purification step and their “dumbbell”-like,34,35 extended 

conformation, for which protonation/deprotonation of the acidic moieties along the PTS-domain 

can hardly affect the conformation of mucins in bulk solution. As the acid-induced aggregation 

occurs through the interaction between the terminal groups, its influence on the central domains 

is also expected to be ignorable. For the same reason, however, it is very difficult to determine 

whether the acidification causes structural changes in the N- and C-terminal domains from far-

UV CD spectra. Potential structural rearrangements in the terminal domains of mucins may have 
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an influence on the surface properties as the interaction with the hydrophobic surface occurs 

predominantly with those domains, as shown below. 

 

3.3 Surface adsorption: OWLS 

Representative adsorption profiles and the average adsorbed masses of the mucins onto 

PDMS surfaces as characterized with OWLS are presented in Figure 3. 

 

 

Figure 3. (a) Representative adsorption profiles of BSM and PGM onto PDMS surface at pH 7.4 
and 2.4 (b) the average adsorbed masses as characterized by OWLS. 

 

As shown in Figure 3(a), the adsorption of all mucins onto PDMS surface was observed to be 

slow in the initial stage for both mucins and at both pHs. While pseudo equilibrium was reached 

within 10 min exposure of PDMS surface to mucin solutions, further exposure to mucin solution 

led to slight, yet continuous increase in the adsorbed mass for all cases (up to 24 hrs, data not 

shown). In this study, the primary interest was to understand the adsorption behaviour of mucins 

onto the PDMS surface under tribological stress. As will be further discussed in section 3.3, 

circular sliding tracks in the pin-on-disk tribometry setup forces the adsorbed mucins films to be 

rubbed away and new films are repeatedly generated. Thus, the initial stage of surface adsorption 
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is more relevant to understanding the lubricating properties of mucins films rather than 

behaviour at equilibrium. For this reason, adsorbed mass was determined by rinsing after 10 min 

for all cases. At pH 7.4, the adsorbed masses of BSM and PGM onto the PDMS surface were 54 

± 2.4 ng/cm2 and 87 ± 1.3 ng/cm2, respectively. Lowering pH from 7.4 to 2.4 significantly 

increased the adsorbed mass of BSM to 116 ± 1.1 ng/cm2 whereas slightly decreased to 77 ± 0.1 

ng/cm2 for PGM (Figure 3). A previous study of BSM adsorption onto hydrophobized silica 

surfaces showed an increase in the surface adsorption at acidic buffer (pH 3.8, 2 mg/mL bulk 

concentration) too. 53 The increase of the adsorbed mass of BSM at acidic pH is mainly ascribed 

to the suppressed intra- and intermolecular electrostatic repulsion, and consequently more 

facilitated packing of BSM molecules on the nonpolar PDMS substrate in aqueous environment. 

In fact, this is a typical behaviour expected from the adsorption of amphiphilic polyanions onto 

nonpolar surfaces from aqueous solution.54,55 As the electrostatic repulsion between 

neighbouring BSM molecules on surface occurs in a more confined space than in bulk solution, 

the increase in adsorbed mass (Figure 4) appears to be more enhanced than the increase in the 

hydrodynamic size distribution (Figure 1). 

PGM, on the other hand, showed much less sensitive response to pH change as only a slight 

decrease in the adsorbed mass (by 11% on average) was observed at pH 2.4 compared to that at 

pH 7.4. In a previous study, a decrease in the adsorbed mass of arPGM at low pH was attributed 

to the increase in the hydrodynamic size of arPGM as a result of aggregation;15 aggregated 

macromolecules tend to reveal less effective packing on the surface because of the bulkiness. 

The magnitude of decrease in the adsorbed mass of PGM by acidification in this study is, 

however, much smaller than that for arPGM,15 presumably because the increase in Dh at low pH 

for the purified PGM is also less extensive as shown in Figure 1. Even though an increase in Dh 
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was observed from BSM too at low pH (Figure 1), the mechanism related to negative charge 

density on BSM mentioned above may dominate the adsorption properties onto nonpolar PDMS 

surface and resulted in an increase of the adsorbed mass at low pH. 

Lastly, as shown in Figure 3(a), the surface adsorption kinetics in the initial stage (< 3 min) at 

pH 7.4 is clearly faster for BSM than PGM in the sense that pseudo equilibrium is reached faster 

for the former. Given that adsorption of mucins onto PDMS surface is driven by hydrophobic 

moieties in the terminal regions, we propose that faster adsorption kinetics of BSM at pH 7.4 

may indicate that hydrophobic moieties in BSM are more exposed to solvent and can quickly 

interact with PDMS surface. In the same context, we can also hypothesize that hydrophobic 

moieties of PGM are more buried inside the hydrophobic pockets that rearrangement is required 

to interact with PDMS surface, and thus the surface adsorption process is slowed down. In other 

words, the difference in surface adsorption kinetics between BSM and PGM at pH 7.4 is closely 

related to their structural difference related to anchoring motifs onto hydrophobic substrates. The 

fact that initial surface kinetics of the two types of mucins is fairly similar at pH 2.4 is consistent 

with this view as the hydrophobic moieties of PGM are also expected to be highly exposed to 

solvent at acidic environment. 

  

3.4 Surface adsorption and surface viscoelasticity of the mucin films: QCM-D 

 QCM-D can be complementary to optical approaches in the characterization of 

macromolecular surface adsorption due to its unique ability to probe not only the solid 

components adsorbed on the sensor (mucins), but also to the solvent coupled to the sensor.27 

Additionally, the response to the resonance of the adsorbed films can reveal the viscoelastic and 

mechanical characteristic of the films. The results from QCM-D study are presented in Figure 4.  
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Figure 4. a) Frequency shifts (Δf), b) dissipation shifts (ΔD) and c) ΔD/Δf ratio corresponding to 
the formation of BSM and PGM films on PDMS surfaces both at pH 7.4 and 2.4 monitored by 
means of QCM-D. Data corresponds to the 3rd overtone of the sensor. The rest of the monitored 
overtones showed a similar behaviour. 
 

We first focus on the data collected at pH 7.4. In this case PGM led to films featured with 

significantly higher shifts in frequency than BSM both before and after being rinsed with 

protein-free buffer (Figure 4(a)). A higher shift in frequency suggests a higher wet mass coupled 

to the sensor. Therefore, at pH 7.4 the wet mass follows the same trend as the dry mass, both 

quantities being higher for PGM than for BSM at PDMS surfaces. Additionally, it has been 

shown for adsorbed mucin films that the coupled solvent is the main contributor to the wet mass 

sensed by QCM-D response.53 Therefore, our data suggests that PGM films are more hydrated 

than BSM films. Along with frequency shifts, dissipation shifts were also monitored (Figure 

4(b)). Dissipation shifts are associated with the viscoelasticity of the adsorbed material, but also 

with the adsorbed mass. As previously commented, the viscoelasticity from the sample is better 

inferred from the ratio between the dissipation and frequency shifts. This parameter i.e., -ΔD/Δf 

(Figure 4(c)), indicates that PGM films have a higher viscous character than BSM films.   

Interestingly, shifting the environmental pH from 7.4 to 2.4 had a different effect on the two 

types of mucin films. The wet mass of both systems i.e., -Δf, was higher at low pH values. 

However, -ΔD/Δf followed an opposite trend for both systems. In the case of BSM films, lower 
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values i.e., more elastic/less viscous character, was observed at pH 2.4 than at pH 7.4. This 

suggests that the higher “dry mass” observed at low pH is a dominating factor leading to more 

elastic films. On the contrary, in the case of PGM films, higher -ΔD/Δf values i.e., less 

elastic/more viscous character, were observed at pH 2.4 than at pH 7.4. The fact that the average 

Dh of PGM molecules was determined to be somewhat larger (Figure 1) at pH 2.4 than at pH 7.4 

and the fact that higher wet mass but lower dry mass was observed at pH 2.4 than pH 7.4 

together imply that the formation of a PGM film at pH 2.4 is achieved in a way resulting in more 

loose structure with more incorporated solvent.  

It is worth to note that BSM and PGM films exhibited another difference during the surface 

adsorption process. In the case of BSM films, an initial overshoot, mostly in the dissipation shift 

but also slightly in the frequency shift, was observed. Both quantities then followed a gradual 

decrease at both studied pHs. This is well illustrated in the -ΔD/Δf plot (Figure 4c). This 

behaviour, which has previously been observed for BSM films formed on hydrophobic 

substrates, 53,56,57 can be explained by the BSM films capturing a high amount of solvent in the 

beginning of the adsorption process, which is then gradually released as the film changes into a 

more compact conformation. On the contrary, PGM films did not exhibit this behaviour. In other 

words, our data indicates that no significant conformational changes occurred in the formation 

process of PGM films. 

 
3.5 Resistance to shear stress: Pin-on-disk tribometry 

The sliding contacts of PDMS-PDMS interface is known to reveal high interfacial friction 

forces, mainly due to the high adhesion between two PDMS surfaces in ambient or even in 

distilled water.21 But, in aqueous solution of amphiphilic macromolecules, e.g. synthetic block 

copolymers21 or mucins,15-17 spontaneous adsorption and formation of lubricating films by these 
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macromolecules tend to convert the interface from hydrophobic to hydrophilic, entrain water, 

and reduce the interfacial friction forces. While the lubricating efficacy is determined by many 

factors, the stability of lubricating films is most influential. Thus, the lubricating effects by the 

two types of mucins at PDMS-PDMS interface in this study are expected to provide the 

additional information on the structural and mechanical characteristics of the films on PDMS 

surface related to the structure and mechanical stability. Figure 5 shows  vs. speed plots of 

PDMS-PDMS sliding contacts in BSM or PGM solutions (1 mg/mL) at pH 7.4 and 2.4. 

 

 

Figure 5.  vs. speed plot of self-mated sliding of PDMS surfaces lubricated with either 1 
mg/mL of BSM (pH 2.4; red circle, pH 7.4; blue circle) or PGM (pH 2.4; red diamond, pH 7.4; 
blue diamond) or buffer (empty circle). 

 

Overall, superior lubricating properties of BSM to PGM are clearly manifested at both pH 

conditions, especially in low-speed regime where boundary lubrication is the dominant 

lubrication mode. BSM solution showed excellent lubricating properties with  values slightly 

increasing with increasing speed, ca. from 0.03 to 0.09, at pH 7.4. At pH 2.4, they were further 

reduced by lowering pH to 2.4. An improvement in the lubricity of BSM at pH 2.4 is well 

correlated with the transition to more elastic films at pH 2.4, as confirmed by parallel studies of 

OWLS and QCM-D (Figure 3 and 4). 
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Meanwhile, the  values for PGM at pH 7.4 were ca. 0.7  0.9 in low-to-mid speed range and 

were comparable to those of buffer solutions, until the sliding speed reaches 50 mm/s or higher 

where they started to decrease to ca. 0.15 or lower. At pH 2.4, the  values of PGM solution was 

comparable to those of BSM solution at speeds  10 mm/s, but this lubricating effect started to 

diminish with decreasing speed. Poor lubricity of PGM films in spite of their highly hydrating 

capabilities suggests that the large amount of water molecules coupled with the PGM films may 

be only loosely bound and easily squeezed out from the tribological contacts without 

contributing to the lubrication of the PDMS-PDMS interface. While hydration of the interface is 

a commonly demanded attribute for effective aqueous lubrication,58 its efficacy is further 

dependent on the tenacity of water molecules coupled within the films at the tribological 

interface. Moreover, the lubricating properties of PGM film were observed to be improved at pH 

2.4 despite its more viscous character (-D/f in Figure 4(c)). Compared to BSM films, this 

behaviour is similar in the net lubricating effect but opposite in the changes of mechanical 

characteristics. Thus, we propose that the reduced electrostatic repulsion is the dominant factor 

to drive the improved lubricity of PGM films at pH 2.4.  

As discussed above, the lubricating properties of the mucin film are closely related to their 

structural features as determined by OWLS and QCM-D. Nevertheless, it is also important to 

note that initially formed mucin films alone are not sufficient to provide persistent lubricating 

effect under the experimental conditions in this study. For instance, the  values presented in 

Figure 5 were obtained from the minimum 20 rotations over the sliding track in pin-on-disk 

tribometry, and stable  values were obtained only when excess amount of mucins were present 

in bulk solution (1 mg/mL in this study). With an initially adsorbed mucin layer alone on PDMS 

surface in protein-free buffer solutions, even the initially  values started to increase 
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immediately and continuously after the first a few laps along the sliding track.16 A quick loss of 

lubricity of a monolayer of mucins in pin-on-disk tribometry, regardless of the type of mucin or 

pH, is ascribed to the weak physisorption nature of mucins via hydrophobic interaction between 

the terminal domains of mucins and PDMS surface. In turn, this also means that overall superior 

lubricating properties of BSM films to PGM films, as well as the improvement at pH 2.4 

compared to pH 7.4 for both mucin films, are partly due to faster recovery of the lubricating 

mucin films as supplied from the bulk solution, following the continuous disrupt/removal from 

the PDMS surface under tribological stress.59 Additionally, the faster kinetics of film formation 

can also explain the improved lubricity of PGM films at pH 2.4 than at pH 7.4 despite less 

amount and more viscous characteristics as mentioned above; more exposed hydrophobic 

moieties to solvent at the terminal regions at pH 2.4 facilitates faster adsorption onto PDMS 

surface and quicker formation of the lubricating films. Moreover, the suppressed electrostatic 

repulsion between neighbouring PGM molecules on nonpolar PDMS surface at pH 2.4 can 

further contribute to the PGM film stability, which is required for effective lubrication.   

 

3.6 A proposed model for the hydrated film structures of the two mucins in aqueous 

solutions 

The collective information obtained with an array of bulk and surface analytical techniques in 

this study showed that in aqueous environments both BSM and PGM spontaneously form films 

on PDMS surfaces, yet with fairly different hydrated film structures. A schematic illustration 

proposed for the BSM and PGM films on PDMS surface in aqueous solution at pH 7.4 and 2.4 is 

shown in Figure 6.  
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Figure 6. Schematic illustration of BSM and PGM films generated via spontaneous adsorption 
from aqueous solution onto PDMS surfaces in aqueous solutions at pH 7.4 and 2.4. The relative 
sizes of overall mucin molecules and its components are not to scale. 

 

First of all, Figure 6(a) depicts schematics of molecular structures of BSM and PGM in bulk 

solution. Both mucins are relatively small and display “dumbbell”-like conformation rather than 

highly coiled conformation. In terms of size, BSM and PGM are roughly in a similar range of Dh 

(Figure 1) at pH 7.4 and both show a slight increase in Dh at pH 2.4. In terms of charge 

characteristics, while the two mucins revealed similar zeta potentials at both pH 7.4 and 2.4, the 

distribution of negatively charged moieties appears to be significantly different. Most 

importantly, the central glycosylated region of BSM is negatively charged due to the abundance 

of sialic acid moieties, whereas it is much less negatively charged because of the relative paucity 

of sialic acid moieties for PGM.34,42 Thus, it is reasonable to assume that negative charges are 

present both in central and terminal regions for BSM, whereas a similar magnitude of negative 
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charges (Zeta potential in Figure 1) is localized at the terminal regions for PGM, although 

experimental verification on the distribution of charged moieties on the two types of mucins is 

necessary. Moreover, it is also proposed that the hydrophobic moieties are more buried in 

hydrophobic pockets, and possibly shielded by the negatively charged moieties in the case of 

PGM whereas hydrophobic patches of BSM are readily exposed to solvent even at pH 7.4. 

The molecular structural difference between BSM and PGM critically affects the adsorption 

properties onto hydrophobic PDMS surface, both in terms of adsorption kinetics and 

conformation on the PDMS surface. For BSM (Figure 6(b)), as a compact film was formed with 

a small adsorbed mass at pH 7.4, we propose that ‘loop’-like conformation is most dominant on 

PDMS surface. Meanwhile, higher adsorbed mass for PGM film at pH 7.4 can be explained by 

the dominance of ‘tail’-like conformation (Figure 6(c)). Single-end anchoring of PGM on the 

surface is, however, not because either C- or N-terminal region of PGM has any particular 

preference to PDMS surface, but because the interaction of both termini with PDMS surface is 

generally less favourable and slower as discussed above. In a previous study employing 

arPGM,15 poor lubricity at neutral pH despite high adsorbed mass was attributed to weakness of 

interaction between individual PGM molecules with PDMS substrate. This argument can be 

further substantiated by proposing that negatively charged moieties are localized at the terminal 

regions of PGM (Figure 6(c)) and consequent electrostatic repulsion between neighbouring PGM 

molecules on PDMS surfaces is a major source of film weakening factor. Moreover, requirement 

for PGM to rearrange its terminal region to expose hydrophobic moieties to interact with PDMS 

surface further delays facile adsorption onto PDMS surface both in adsorption kinetics and 

stability point of view. The two conformations exclusively illustrated for BSM and PGM films in 

Figure 6(b) and (c) are, of course, a highly simplified picture to emphasize the difference in 
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molecular structure of the two mucin films, and both conformations should be possible for both 

films at different ratios in reality.  

A substantial increase in the adsorbed mass of BSM at pH 2.4 (Figure 3) may suggest a 

conformational change from ‘loop’ to ‘tail’ as with PGM. However, intensified elasticity of 

BSM films (Figure 4) indicates that the increased mass of BSM at pH 2.4 occurs via even more 

dense packing of BSM molecules without drastic conformational changes as illustrated in Figure 

6(b). Overall, the acid-induced changes of BSM film structure conform to a conventional view 

for the adsorption of amphiphilic polyanionic macromolecules on nonpolar surfaces. Abnormal 

responses of PGM films as amphiphilic polyanion at acidic pH, such as reduced amount of 

adsorption and increased viscous characteristics, can also be related to the model that negative 

charges are localized at the terminal regions; the conformation of the central region, which 

occupies the majority of PGM molecule, is virtually not influenced by protonation of acidic 

moieties at low pH. Instead, the terminal regions of PGM may be linked with each other, as 

shown by the increase in Dh at pH 2.4 (Figure 1), following exposure of the hydrophobic patches 

to solvent. This may result in less effective packing and more loose structure, yet with higher 

amount of incorporated solvent as shown in Figure 6(c).  

 

4. Conclusions 

In this work, we have investigated and compared the structural and mechanical characteristics 

of mucin films generated from BSM and PGM by employing a variety of bulk and surface 

analytical techniques. An additional purification step was employed to remove the non-mucin 

proteins from PGM and BSM received from the commercial manufacturer. Furthermore, large 

aggregates or intrinsically large species of both mucins were also removed in this purification 
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step. Thus, the purified mucins were relatively small and homogeneous in hydrodynamic size 

distribution. Both mucins exhibited a fast spontaneous adsorption on hydrophobic PDMS 

surfaces from aqueous solutions. Films formed by the two types of mucins showed a number of 

important differences as well. Firstly, the formation of BSM films accompanied by the release of 

some portion of initially entrapped solvent, which indicates that a structural arrangement of BSM 

films occurred to result in a compact and elastic film conformation. This was well manifested in 

response to the lateral resonance by QCM-D. This behaviour was not observed from PGM films 

even though they incorporate even larger amounts of solvent. However, this does not necessarily 

mean higher affinity of water molecules to PGM films compared to BSM films, but rather 

implies that the network formed by PGM molecules on PDMS surface was more loose, resulting 

in the formation of more viscous films. This structural feature was most clearly manifested in the 

inferior lubricity of PGM films. Ultimately, the difference in the structural and mechanical 

properties of BSM and PGM films was correlated to the difference in the molecular structural of 

the two mucins. In particular, localized distribution of negatively charged motifs at the terminal 

regions and more buried location of hydrophobic patches for PGM can account for the formation 

of loose and weak film, which is not sufficient to withstand tribological stress. 
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