106 research outputs found
Valine Aminoacyl-tRNA Synthetase Promotes Therapy Resistance in Melanoma
Transfer RNA dynamics contribute to cancer development through regulation of codon-specific messenger RNA translation. Specific aminoacyl-tRNA synthetases can either promote or suppress tumourigenesis. Here we show that valine aminoacyl-tRNA synthetase (VARS) is a key player in the codon-biased translation reprogramming induced by resistance to targeted (MAPK) therapy in melanoma. The proteome rewiring in patient-derived MAPK therapy-resistant melanoma is biased towards the usage of valine and coincides with the upregulation of valine cognate tRNAs and of VARS expression and activity. Strikingly, VARS knockdown re-sensitizes MAPK-therapy-resistant patient-derived melanoma in vitro and in vivo. Mechanistically, VARS regulates the messenger RNA translation of valine-enriched transcripts, among which hydroxyacyl-CoA dehydrogenase mRNA encodes for a key enzyme in fatty acid oxidation. Resistant melanoma cultures rely on fatty acid oxidation and hydroxyacyl-CoA dehydrogenase for their survival upon MAPK treatment. Together, our data demonstrate that VARS may represent an attractive therapeutic target for the treatment of therapy-resistant melanoma
Negative cell cycle regulation by Calcineurin is necessary for proper beta cell regeneration in zebrafish
peer reviewedStimulation of pancreatic beta cell regeneration could be a therapeutic lead to treat diabetes. Unlike humans, the zebrafish can efficiently regenerate beta cells, notably from ductal pancreatic progenitors. To gain insight into the molecular pathways involved in this process, we established the transcriptomic profile of the ductal cells after beta cell ablation in the adult zebrafish. These data highlighted the protein phosphatase calcineurin as a new potential modulator of beta cell regeneration. We showed that calcineurin overexpression abolished the regenerative response, leading to glycemia dysregulation. On the opposite, calcineurin inhibition increased ductal cell proliferation and subsequent beta cell regeneration. Interestingly, the enhanced proliferation of the progenitors was paradoxically coupled with their exhaustion. This suggests that the proliferating progenitors are next entering in differentiation. Calcineurin appears as a guardian which prevents an excessive progenitor proliferation to preserve the pool of progenitors. Altogether, our findings reveal calcineurin as a key player in the balance between proliferation and differentiation to enable a proper beta cell regeneration
Perinatal exposure to the fungicide ketoconazole alters hypothalamic control of puberty in female rats
IntroductionEstrogenic endocrine disrupting chemicals (EDCs) such as diethylstilbestrol (DES) are known to alter the timing of puberty onset and reproductive function in females. Accumulating evidence suggests that steroid synthesis inhibitors such as ketoconazole (KTZ) or phthalates may also affect female reproductive health, however their mode of action is poorly understood. Because hypothalamic activity is very sensitive to sex steroids, we aimed at determining whether and how EDCs with different mode of action can alter the hypothalamic transcriptome and GnRH release in female rats.DesignFemale rats were exposed to KTZ or DES during perinatal (DES 3-6-12μg/kg.d; KTZ 3-6-12mg/kg.d), pubertal or adult periods (DES 3-12-48μg/kg.d; KTZ 3-12-48mg/kg.d).ResultsEx vivo study of GnRH pulsatility revealed that perinatal exposure to the highest doses of KTZ and DES delayed maturation of GnRH secretion before puberty, whereas pubertal or adult exposure had no effect on GnRH pulsatility. Hypothalamic transcriptome, studied by RNAsequencing in the preoptic area and in the mediobasal hypothalamus, was found to be very sensitive to perinatal exposure to all doses of KTZ before puberty with effects persisting until adulthood. Bioinformatic analysis with Ingenuity Pathway Analysis predicted “Creb signaling in Neurons” and “IGF-1 signaling” among the most downregulated pathways by all doses of KTZ and DES before puberty, and “PPARg” as a common upstream regulator driving gene expression changes. Deeper screening ofRNAseq datasets indicated that a high number of genes regulating the activity of the extrinsic GnRH pulse generator were consistently affected by all the doses of DES and KTZ before puberty. Several, including MKRN3, DNMT3 or Cbx7, showed similar alterations in expression at adulthood.ConclusionnRH secretion and the hypothalamic transcriptome are highly sensitive to perinatal exposure to both DES and KTZ. The identified pathways should be exploredfurther to identify biomarkers for future testing strategies for EDC identification and when enhancing the current standard information requirements in regulation
Combined analysis of single cell RNA-Seq and ATAC-Seq data reveals putative regulatory toggles operating in native and iPS-derived retina.
We report the generation and analysis of single-cell RNA-Seq data (> 38,000 cells) from native and iPSC-derived murine retina at four matched developmental stages spanning the emergence of the major retinal cell types. We combine information from temporal sampling, visualization of 3D UMAP manifolds, pseudo-time and RNA velocity analyses, to show that iPSC-derived 3D retinal aggregates broadly recapitulate the native developmental trajectories. However, we show relaxation of spatial and temporal transcriptome control, premature emergence and dominance of photoreceptor precursor cells, and susceptibility of dynamically regulated pathways and transcription factors to culture conditions in iPSC-derived retina. We generate bulk ATAC-Seq data for native and iPSC-derived murine retina identifying ~125,000 peaks. We combine single-cell RNA-Seq with ATAC-Seq information and obtain evidence that approximately half the transcription factors that are dynamically regulated during retinal development may act as repressors rather than activators. We propose that sets of activators and repressors with cell-type specific expression constitute regulatory toggles that lock cells in distinct transcriptome states underlying differentiation. We provide evidence supporting our hypothesis from the analysis of publicly available single-cell ATAC-Seq data for adult mouse retina. We identify subtle but noteworthy differences in the operation of such toggles between native and iPSC-derived retina particularly for the Etv1, Etv5, Hes1 and Zbtb7a group of transcription factors
Loss of Elp3 blocks intestinal tuft cell differentiation via an mTORC1-Atf4 axis.
peer reviewedIntestinal tuft cells are critical for anti-helminth parasite immunity because they produce IL-25, which triggers IL-13 secretion by activated group 2 innate lymphoid cells (ILC2s) to expand both goblet and tuft cells. We show that epithelial Elp3, a tRNA-modifying enzyme, promotes tuft cell differentiation and is consequently critical for IL-25 production, ILC2 activation, goblet cell expansion and control of Nippostrongylus brasiliensis helminth infection in mice. Elp3 is essential for the generation of intestinal immature tuft cells and for the IL-13-dependent induction of glycolytic enzymes such as Hexokinase 1 and Aldolase A. Importantly, loss of epithelial Elp3 in the intestine blocks the codon-dependent translation of the Gator1 subunit Nprl2, an mTORC1 inhibitor, which consequently enhances mTORC1 activation and stabilizes Atf4 in progenitor cells. Likewise, Atf4 overexpression in mouse intestinal epithelium blocks tuft cell differentiation in response to intestinal helminth infection. Collectively, our data define Atf4 as a negative regulator of tuft cells and provide insights into promotion of intestinal type 2 immune response to parasites through tRNA modifications
IL-4 induces CD22 expression to restrain the effector program of self-reactive virtual memory T cells
Abstract
Parasitic helminths induce the production of interleukin (IL)-4 which causes the expansion of virtual memory CD8+ T cells (Tvm), a cell subset contributing to the control of viral coinfection. However, the mechanisms regulating IL-4-dependent Tvm activation and expansion during worm infection remain ill defined. We used single-cell RNA sequencing of CD8+ T cells to investigate IL-4-dependent Tvm responses upon helminth infection in mice. Gene signature analysis of CD8+ T cells identified a cell cluster marked by CD22, a canonical regulator of B cell activation, as a specific and selective surface marker of IL-4-induced Tvm cells. CD22+ Tvm were enriched for IFN-γ and granzyme A and retained a diverse TCR repertoire, while enriched in CDR3 sequences with features of self-reactivity. Deletion of CD22 expression in CD8+ T cells enhanced Tvm responses to helminth infection, indicating that this inhibitory receptor modulates Tvm responses. Thus, helminth-induced IL-4 drives the expansion and activation of self-reactive Tvm in the periphery that is counter-inhibited by CD22
Conciliation biology: the eco-evolutionary management of permanently invaded biotic systems
Biotic invaders and similar anthropogenic novelties such as domesticates, transgenics, and cancers can alter ecology and evolution in environmental, agricultural, natural resource, public health, and medical systems. The resulting biological changes may either hinder or serve management objectives. For example, biological control and eradication programs are often defeated by unanticipated resistance evolution and by irreversibility of invader impacts. Moreover, eradication may be ill-advised when nonnatives introduce beneficial functions. Thus, contexts that appear to call for eradication may instead demand managed coexistence of natives with nonnatives, and yet applied biologists have not generally considered the need to manage the eco-evolutionary dynamics that commonly result from interactions of natives with nonnatives. Here, I advocate a conciliatory approach to managing systems where novel organisms cannot or should not be eradicated. Conciliatory strategies incorporate benefits of nonnatives to address many practical needs including slowing rates of resistance evolution, promoting evolution of indigenous biological control, cultivating replacement services and novel functions, and managing native–nonnative coevolution. Evolutionary links across disciplines foster cohesion essential for managing the broad impacts of novel biotic systems. Rather than signaling defeat, conciliation biology thus utilizes the predictive power of evolutionary theory to offer diverse and flexible pathways to more sustainable outcomes
- …