11,850 research outputs found

    Two-level laser light statistics

    Get PDF
    The statistics of the light emitted by two-level lasers is evaluated on the basis of generalized rate equations. According to that approach, all fluctuations are interpreted as being caused by the jumps that occur in active and detecting atoms. The intra-cavity Fano factor and the photo-current spectral density are obtained analytically for Poissonian and quiet pumps. The algebra is simple and the formulas hold for small as well as large pumping rates. Lasers exhibit excess noise at low pumping levels.Comment: 9 pages, 3 figures, in Optics Communication format (elsevier

    Detection of gravitational wave bursts by interferometric detectors

    Get PDF
    We study in this paper some filters for the detection of burst-like signals in the data of interferometric gravitational-wave detectors. We present first two general (non-linear) filters with no {\it a priori} assumption on the waveforms to detect. A third filter, a peak correlator, is also introduced and permits to estimate the gain, when some prior information is known about the waveforms. We use the catalogue of supernova gravitational-wave signals built by Zwerger and M\"uller in order to have a benchmark of the performance of each filter and to compare to the performance of the optimal filter. The three filters could be a part of an on-line triggering in interferometric gravitational-wave detectors, specialised in the selection of burst events.Comment: 15 pages, 8 figure

    Fluorescence from a few electrons

    Full text link
    Systems containing few Fermions (e.g., electrons) are of great current interest. Fluorescence occurs when electrons drop from one level to another without changing spin. Only electron gases in a state of equilibrium are considered. When the system may exchange electrons with a large reservoir, the electron-gas fluorescence is easily obtained from the well-known Fermi-Dirac distribution. But this is not so when the number of electrons in the system is prevented from varying, as is the case for isolated systems and for systems that are in thermal contact with electrical insulators such as diamond. Our accurate expressions rest on the assumption that single-electron energy levels are evenly spaced, and that energy coupling and spin coupling between electrons are small. These assumptions are shown to be realistic for many systems. Fluorescence from short, nearly isolated, quantum wires is predicted to drop abruptly in the visible, a result not predicted by the Fermi-Dirac distribution. Our exact formulas are based on restricted and unrestricted partitions of integers. The method is considerably simpler than the ones proposed earlier, which are based on second quantization and contour integration.Comment: 10 pages, 3 figures, RevTe

    The imbalanced antiferromagnet in an optical lattice

    Full text link
    We study the rich properties of the imbalanced antiferromagnet in an optical lattice. We present its phase diagram, discuss spin waves and explore the emergence of topological excitations in two dimensions, known as merons, which are responsible for a Kosterlitz-Thouless transition that has never unambiguously been observed.Comment: 4 pages, 5 figures, RevTe

    Looking for Light Pseudoscalar Bosons in the Binary Pulsar System J0737-3039

    Get PDF
    We present numerical calculations of the photon-light-pseudoscalar-boson conversion in the recently discovered binary pulsar system J0737-3039. Light pseudoscalar bosons (LPBs) oscillate into photons in the presence of strong magnetic fields. In the context of this binary pulsar system, this phenomenon attenuates the light beam emitted by one of the pulsars, when the light ray goes through the magnetosphere of the companion pulsar. We show that such an effect is observable in the gamma-ray band since the binary pulsar is seen almost edge-on, depending on the value of the LPB mass and on the strenght of its two-photon coupling. Our results are surprising in that they show a very sharp and significant (up to 50%) transition probability in the gamma-ray (>> tens of MeV) domain. The observations can be performed by the upcoming NASA GLAST mission.Comment: to appear in Phys. Rev. Let

    A Note on Easy and Efficient Computation of Full Abelian Periods of a Word

    Get PDF
    Constantinescu and Ilie (Bulletin of the EATCS 89, 167-170, 2006) introduced the idea of an Abelian period with head and tail of a finite word. An Abelian period is called full if both the head and the tail are empty. We present a simple and easy-to-implement O(nlog⁥log⁥n)O(n\log\log n)-time algorithm for computing all the full Abelian periods of a word of length nn over a constant-size alphabet. Experiments show that our algorithm significantly outperforms the O(n)O(n) algorithm proposed by Kociumaka et al. (Proc. of STACS, 245-256, 2013) for the same problem.Comment: Accepted for publication in Discrete Applied Mathematic

    Chondroblastoma of the Clivus: Case Report and Review.

    Get PDF
    Background and Importance Chondroblastoma is a benign primary bone tumor that typically develops in the epiphyses of long bones. Chondroblastoma of the craniofacial skeleton is extremely rare, with most cases occurring in the squamosal portion of the temporal bone. In this report, we describe the first case of chondroblastoma of the clivus presenting with cranial neuropathy that was treated with endoscopic endonasal resection. We review the literature on craniofacial chondroblastomas with particular emphasis on extratemporal lesions. Case Presentation A 27-year-old woman presented with severe headache, left facial dysesthesias, and diplopia. Physical examination revealed hypesthesia in the left maxillary nerve dermatome, and complete left abducens nerve palsy. Imaging demonstrated an expansile intraosseous mass originating in the upper clivus with extension superiorly into the sella turcica and laterally to involve the medial wall of the left cavernous sinus. The tumor was completely resected via an endoscopic endonasal approach, with postoperative improvement in lateral gaze palsy. Histopathology was consistent with chondroblastoma. Conclusion Chondroblastoma is a rare tumor of the craniofacial skeleton that should be included in the differential diagnosis of an osteolytic lesion of the clivus. Complete surgical resection remains the mainstay of treatment

    The hot gas content of fossil galaxy clusters

    Full text link
    We investigate the properties of the hot gas in four fossil galaxy systems detected at high significance in the Planck Sunyaev-Zeldovich (SZ) survey. XMM-Newton observations reveal overall temperatures of kT ~ 5-6 keV and yield hydrostatic masses M500,HE > 3.5 x 10e14 Msun, confirming their nature as bona fide massive clusters. We measure the thermodynamic properties of the hot gas in X-rays (out to beyond R500 in three cases) and derive their individual pressure profiles out to R ~ 2.5 R500 with the SZ data. We combine the X-ray and SZ data to measure hydrostatic mass profiles and to examine the hot gas content and its radial distribution. The average Navarro-Frenk-White (NFW) concentration parameter, c500 = 3.2 +/- 0.4, is the same as that of relaxed `normal' clusters. The gas mass fraction profiles exhibit striking variation in the inner regions, but converge to approximately the cosmic baryon fraction (corrected for depletion) at R500. Beyond R500 the gas mass fraction profiles again diverge, which we interpret as being due to a difference in gas clumping and/or a breakdown of hydrostatic equilibrium in the external regions. Overall our observations point to considerable radial variation in the hot gas content and in the gas clumping and/or hydrostatic equilibrium properties in these fossil clusters, at odds with the interpretation of their being old, evolved and undisturbed. At least some fossil objects appear to be dynamically young.Comment: 4 pages, 2 figures. Accepted for publication in A&
    • 

    corecore