58 research outputs found

    Interaction of nucleoplasmin with core histones

    Get PDF
    Nucleoplasmin is one of the most abundant proteins in Xenopus laevis oocytes, and it has been involved in the chromatin remodeling that takes place immediately after fertilization. This molecule has been shown to be responsible for the removal of the sperm-specific proteins and deposition of somatic histones onto the male pronuclear chromatin. To better understand the latter process, we have used sedimentation velocity, sedimentation equilibrium, and sucrose gradient fractionation analysis to show that the pentameric form of nucleoplasmin binds to a histone octamer equivalent consisting of equal amounts of the four core histones, H2A, H2B, H3, and H4, without any noticeable preference for any of these proteins. Removal of the histone N-terminal 'tail' domains or the major C-terminal polyglutamic tracts of nucleoplasmin did not alter these binding properties. These results indicate that interactions other than those electrostatic in nature (likely hydrophobic) also play a critical role in the formation of the complex between the negatively charged nucleoplasmin and positively charged histones. Although the association of histones with nucleoplasmin may involve some ionic interactions, the interaction process is not electrostatically driven

    Scaffolds for sustained release of ambroxol hydrochloride, a pharmacological Chaperone that Increases the Activity of Misfolded ß-Glucocerebrosidase

    Get PDF
    Ambroxol is a pharmacological chaperone (PC) for Gaucher disease that increases lysosomal activity of misfolded ß-glucocerebrosidase (GCase) while displaying a safe toxicological profile. In this work, different poly(e-caprolactone) (PCL)-based systems are developed to regulate the sustained release of small polar drugs in physiological environments. For this purpose, ambroxol is selected as test case since the encapsulation and release of PCs using polymeric scaffolds have not been explored yet. More specifically, ambroxol is successfully loaded in electrospun PCL microfibers, which are subsequently coated with additional PCL layers using dip-coating or spin-coating. The time needed to achieve 80% release of loaded ambroxol increases from ˜15 min for uncoated fibrous scaffolds to 3 days and 1 week for dip-coated and spin-coated systems, respectively. Furthermore, it is proven that the released drug maintains its bioactivity, protecting GCase against induced thermal denaturationPeer ReviewedPostprint (author's final draft

    Paired guide RNA CRISPR-Cas9 screening for protein-coding genes and lncRNAs involved in transdifferentiation of human B-cells to macrophages.

    Get PDF
    CRISPR-Cas9 screening libraries have arisen as a powerful tool to identify protein-coding (pc) and non-coding genes playing a role along different processes. In particular, the usage of a nuclease active Cas9 coupled to a single gRNA has proven to efficiently impair the expression of pc-genes by generating deleterious frameshifts. Here, we first demonstrate that targeting the same gene simultaneously with two guide RNAs (paired guide RNAs, pgRNAs) synergistically enhances the capacity of the CRISPR-Cas9 system to knock out pc-genes. We next design a library to target, in parallel, pc-genes and lncRNAs known to change expression during the transdifferentiation from pre-B cells to macrophages. We show that this system is able to identify known players in this process, and also predicts 26 potential novel ones, of which we select four (two pc-genes and two lncRNAs) for deeper characterization. Our results suggest that in the case of the candidate lncRNAs, their impact in transdifferentiation may be actually mediated by enhancer regions at the targeted loci, rather than by the lncRNA transcripts themselves. The CRISPR-Cas9 coupled to a pgRNAs system is, therefore, a suitable tool to simultaneously target pc-genes and lncRNAs for genomic perturbation assays

    The Origins and the Biological Consequences of the Pur/Pyr DNA·RNA Asymmetry

    Get PDF
    We analyze the physical origin and the chemical and biological consequences of the asymmetry that occurs in DNA·RNA hybrids when the purine/pyrimidine (Pu/Py) ratio is different in the DNA and RNA strands. When the DNA strand of the hybrid is Py rich, the duplex is much more stable, rigid, and A-like than when the DNA strand is Pu rich. The origins of this dramatic asymmetry are double: first, the apparently innocuous substitution dT → rU produces a significant decrease in stacking, and second, backbone distortions are larger for DNA(Pu)·RNA(Py) hybrids than for the mirror RNA(Pu)·DNA(Py) ones. The functional impact of the structural and dynamic asymmetry in the biological activities of hybrids is dramatic and can be used to improve the efficiency of antisense-type strategies on the basis of the degradation of hybrids by RNase H or gene editing using CRISPR-Cas9 technology

    Evolution of selenophosphate synthetases: emergence and relocation of function through independent duplications and recurrent subfunctionalization

    Get PDF
    Selenoproteins are proteins that incorporate selenocysteine (Sec), a nonstandard amino acid encoded by UGA, normally a stop codon. Sec synthesis requires the enzyme Selenophosphate synthetase (SPS or SelD), conserved in all prokaryotic and eukaryotic genomes encoding selenoproteins. Here, we study the evolutionary history of SPS genes, providing a map of selenoprotein function spanning the whole tree of life. SPS is itself a selenoprotein in many species, although functionally equivalent homologs that replace the Sec site with cysteine (Cys) are common. Many metazoans, however, possess SPS genes with substitutions other than Sec or Cys (collectively referred to as SPS1). Using complementation assays in fly mutants, we show that these genes share a common function, which appears to be distinct from the synthesis of selenophosphate carried out by the Sec- and Cys- SPS genes (termed SPS2), and unrelated to Sec synthesis. We show here that SPS1 genes originated through a number of independent gene duplications from an ancestral metazoan selenoprotein SPS2 gene that most likely already carried the SPS1 function. Thus, in SPS genes, parallel duplications and subsequent convergent subfunctionalization have resulted in the segregation to different loci of functions initially carried by a single gene. This evolutionary history constitutes a remarkable example of emergence and evolution of gene function, which we have been able to trace thanks to the singular features of SPS genes, wherein the amino acid at a single site determines unequivocally protein function and is intertwined to the evolutionary fate of the entire selenoproteome

    Trisomy 8, A Cytogenetic Abnormality In Myelodysplastic Syndromes, Is Constitutional Or Not?

    Get PDF
    Isolated trisomy 8 is not considered presumptive evidence of myelodysplastic syndrome (MDS) in cases without minimal morphological criteria. One reason given is that trisomy 8 (+8) can be found as a constitutional mosaicism (cT8M). We tried to clarify the incidence of cT8M in myeloid neoplasms, specifically in MDS, and the diagnostic value of isolated +8 in MDS. Twenty-two MDS and 10 other myeloid neoplasms carrying +8 were studied. Trisomy 8 was determined in peripheral blood by conventional cytogenetics (CC) and on granulocytes, CD3+ lymphocytes and oral mucosa cells by fluorescence in situ hybridization (FISH). In peripheral blood CC, +8 was seen in 4/32 patients. By FISH, only one patient with chronic myelomonocytic leukemia showed +8 in all cell samples and was interpreted as a cT8M. In our series +8 was acquired in all MDS. Probably, once discarded cT8M by FISH from CD3+ lymphocytes and non-hematological cells, +8 should be considered with enough evidence to MDS

    The expression level of BAALC -associated microRNA miR-3151 is an independent prognostic factor in younger patients with cytogenetic intermediate-risk acute myeloid leukemia

    Get PDF
    Acute myeloid leukemia (AML) is a heterogeneous disease whose prognosis is mainly related to the biological risk conferred by cytogenetics and molecular profiling. In elderly patients (⩾60 years) with normal karyotype AML miR-3151 have been identified as a prognostic factor. However, miR-3151 prognostic value has not been examined in younger AML patients. In the present work, we have studied miR-3151 alone and in combination with BAALC, its host gene, in a cohort of 181 younger intermediate-risk AML (IR-AML) patients. Patients with higher expression of miR-3151 had shorter overall survival (P =0.0025), shorter leukemia-free survival (P =0.026) and higher cumulative incidence of relapse (P =0.082). Moreover, in the multivariate analysis miR-3151 emerged as independent prognostic marker in both the overall series and within the unfavorable molecular prognostic category. Interestingly, the combined determination of both miR-3151 and BAALC improved this prognostic stratification, with patients with low levels of both parameters showing a better outcome compared with those patients harboring increased levels of one or both markers (P =0.003). In addition, we studied the microRNA expression profile associated with miR-3151 identifying a six-microRNA signature. In conclusion, the analysis of miR-3151 and BAALC expression may well contribute to an improved prognostic stratification of younger patients with IR-AML

    The expression level of BAALC-associated microRNA miR-3151 is an independent prognostic factor in younger patients with cytogenetic intermediate-risk acute myeloid leukemia

    Get PDF
    Acute myeloid leukemia (AML) is a heterogeneous disease whose prognosis is mainly related to the biological risk conferred by cytogenetics and molecular profiling. In elderly patients (>= 60 years) with normal karyotype AML miR-3151 have been identified as a prognostic factor. However, miR-3151 prognostic value has not been examined in younger AML patients. In the present work, we have studied miR-3151 alone and in combination with BAALC, its host gene, in a cohort of 181 younger intermediate-risk AML (IR-AML) patients. Patients with higher expression of miR-3151 had shorter overall survival (P = 0.0025), shorter leukemia-free survival (P = 0.026) and higher cumulative incidence of relapse (P = 0.082). Moreover, in the multivariate analysis miR-3151 emerged as independent prognostic marker in both the overall series and within the unfavorable molecular prognostic category. Interestingly, the combined determination of both miR-3151 and BAALC improved this prognostic stratification, with patients with low levels of both parameters showing a better outcome compared with those patients harboring increased levels of one or both markers (P = 0.003). In addition, we studied the microRNA expression profile associated with miR-3151 identifying a six-microRNA signature. In conclusion, the analysis of miR-3151 and BAALC expression may well contribute to an improved prognostic stratification of younger patients with IR-AML
    • …
    corecore