836 research outputs found
Elimination of subharmonics in direct look-up table (DLT) sine wave reference generators for low-cost microprocessor-controlled inverters
This paper investigates distortion of an inverter reference waveform generated using a direct look-up (DLT) algorithm. The sources of various distortion components are identified and the implications for application to variable speed drives and grid connected inverters are described. Harmonic and subharmonic distortion mechanisms are analyzed, and compared with experimental results. Analytical methods are derived to determine the occurrence of subharmonics, their number, frequencies and maximum amplitudes. A relationship is established identifying a discrete set of synthesizable frequencies which avoid sub-harmonic distortion as a function of look-up table length and a practical method for calculation of the look-up table indices, based on finite length binary representation, is presented. Real time experimental results are presented to verify the analytical derivations
Low order harmonic cancellation in a grid connected multiple inverter system via current control parameter randomization
In grid connected multiple inverter systems, it is normal to synchronize the output current of each inverter to the common network voltage. Any current controller deficiencies, which result in low order harmonics, are also synchronized to the common network voltage. As a result the harmonics produced by individual converters show a high degree of correlation and tend to be additive. Each controller can be tuned to achieve a different harmonic profile so that harmonic cancellation can take place in the overall system, thus reducing the net current total harmonic distortion level. However, inter-inverter communication is required. This paper presents experimental results demonstrating an alternative approach, which is to arrange for the tuning within each inverter to be adjusted automatically with a random component. This results in a harmonic output spectrum that varies with time, but is uncorrelated with the harmonic spectrum of any other inverter in the system. The net harmonics from all the inverters undergo a degree of cancellation and the overall system yields a net improvement in power quality
Suppression of line voltage related distortion in current controlled grid connected inverters
The influence of selected control strategies on the level
of low-order current harmonic distortion generated by an inverter
connected to a distorted grid is investigated through a combination
of theoretical and experimental studies. A detailed theoretical
analysis, based on the concept of harmonic impedance, establishes
the suitability of inductor current feedback versus output
current feedback with respect to inverter power quality. Experimental
results, obtained from a purpose-built 500-W, three-level,
half-bridge inverter with an L-C-L output filter, verify the efficacy of inductor current as the feedback variable, yielding an
output current total harmonic distortion (THD) some 29% lower
than that achieved using output current feedback. A feed-forward
grid voltage disturbance rejection scheme is proposed as a means to
further reduce the level of low-order current harmonic distortion.
Results obtained from an inverter with inductor current feedback
and optimized feed-forward disturbance rejection show a THD of
just 3% at full-load, representing an improvement of some 53% on
the same inverter with output current feedback and no feed-forward
compensation. Significant improvements in THD were also
achieved across the entire load range. It is concluded that the use
of inductor current feedback and feed-forward voltage disturbance
rejection represent cost–effect mechanisms for achieving improved
output current quality
A Health Index for hatchery-reared Red Drum (Sciaenops ocellatus)[abstract of poster presentation]
Surgical implantation of acoustic transmitters in juvenile Red Drum, Sciaenops ocellatus [abstract of poster presentation]
Memetic Multilevel Hypergraph Partitioning
Hypergraph partitioning has a wide range of important applications such as
VLSI design or scientific computing. With focus on solution quality, we develop
the first multilevel memetic algorithm to tackle the problem. Key components of
our contribution are new effective multilevel recombination and mutation
operations that provide a large amount of diversity. We perform a wide range of
experiments on a benchmark set containing instances from application areas such
VLSI, SAT solving, social networks, and scientific computing. Compared to the
state-of-the-art hypergraph partitioning tools hMetis, PaToH, and KaHyPar, our
new algorithm computes the best result on almost all instances
Effect of tensor couplings in a relativistic Hartree approach for finite nuclei
The relativistic Hartree approach describing the bound states of both
nucleons and anti-nucleons in finite nuclei has been extended to include tensor
couplings for the - and -meson. After readjusting the parameters
of the model to the properties of spherical nuclei, the effect of
tensor-coupling terms rises the spin-orbit force by a factor of 2, while a
large effective nucleon mass sustains. The overall
nucleon spectra of shell-model states are improved evidently. The predicted
anti-nucleon spectra in the vacuum are deepened about 20 -- 30 MeV.Comment: 31 pages, 4 postscript figures include
Detector for imaging and dosimetry of laser-driven epithermal neutrons by alpha conversion
An epithermal neutron imager based on detecting alpha particles created by boron neutron capture mechanism is discussed. The diagnostic mainly consists of a mm thick Boron Nitride (BN) sheet (as an alpha converter) in contact with a non-borated cellulose nitride film (LR115 type-II) detector. While the BN absorbs the neutrons below 0.1 eV, the fast neutrons register insignificantly in the detector due to their low neutron capture and recoil cross-sections. The use of solid-state nuclear track detectors (SSNTD), unlike image plates, micro-channel plates and scintillators, provide safeguard from the x-rays, gamma-rays and electrons. The diagnostic was tested on a proof-of-principle basis, in front of a laser driven source of moderated neutrons, which suggests the potential of using this diagnostic (BN+SSNTD) for dosimetry and imaging applications
Electromagnetic Polarization Effects due to Axion Photon Mixing
We investigate the effect of axions on the polarization of electromagnetic
waves as they propagate through astronomical distances. We analyze the change
in the dispersion of the electromagnetic wave due to its mixing with axions. We
find that this leads to a shift in polarization and turns out to be the
dominant effect for a wide range of frequencies. We analyze whether this effect
or the decay of photons into axions can explain the large scale anisotropies
which have been observed in the polarizations of quasars and radio galaxies. We
also comment on the possibility that the axion-photon mixing can explain the
dimming of distant supernovae.Comment: 18 pages, 1 figur
On a diffuse interface model for tumour growth with non-local interactions and degenerate mobilities
We study a non-local variant of a diffuse interface model proposed by
Hawkins--Darrud et al. (2012) for tumour growth in the presence of a chemical
species acting as nutrient. The system consists of a Cahn--Hilliard equation
coupled to a reaction-diffusion equation. For non-degenerate mobilities and
smooth potentials, we derive well-posedness results, which are the non-local
analogue of those obtained in Frigeri et al. (European J. Appl. Math. 2015).
Furthermore, we establish existence of weak solutions for the case of
degenerate mobilities and singular potentials, which serves to confine the
order parameter to its physically relevant interval. Due to the non-local
nature of the equations, under additional assumptions continuous dependence on
initial data can also be shown.Comment: 28 page
- …
