2,362 research outputs found

    Clustering of tau-immunoreactive pathology in chronic traumatic encephalopathy

    Get PDF
    Chronic traumatic encephalopathy (CTE) is a neurodegenerative disorder which may result from repetitive brain injury. A variety of tau-immunoreactive pathologies are present, including neurofibrillary tangles (NFT), neuropil threads (NT), dot-like grains (DLG), astrocytic tangles (AT), and occasional neuritic plaques (NP). In tauopathies, cellular inclusions in the cortex are clustered within specific laminae, the clusters being regularly distributed parallel to the pia mater. To determine whether a similar spatial pattern is present in CTE, clustering of the tau-immunoreactive pathology was studied in the cortex, hippocampus, and dentate gyrus in 11 cases of CTE and 7 cases of Alzheimer’s disease neuropathologic change (ADNC) without CTE. In CTE: (1) all aspects of tau-immunoreactive pathology were clustered and the clusters were frequently regularly distributed parallel to the tissue boundary, (2) clustering was similar in two CTE cases with minimal co-pathology compared with cases with associated ADNC or TDP-43 proteinopathy, (3) in a proportion of cortical gyri, estimated cluster size was similar to that of cell columns of the cortico-cortical pathways, and (4) clusters of the tau-immunoreactive pathology were infrequently spatially correlated with blood vessels. The NFT and NP in ADNC without CTE were less frequently randomly or uniformly distributed and more frequently in defined clusters than in CTE. Hence, the spatial pattern of the tau-immunoreactive pathology observed in CTE is typical of the tauopathies but with some distinct differences compared to ADNC alone. The spread of pathogenic tau along anatomical pathways could be a factor in the pathogenesis of the disease

    Under-five mortality: spatial-temporal clusters in Ifakara HDSS in South-eastern Tanzania.

    Get PDF
    BACKGROUND\ud \ud Childhood mortality remains an important subject, particularly in sub-Saharan Africa where levels are still unacceptably high. To achieve the set Millennium Development Goals 4, calls for comprehensive application of the proven cost-effective interventions. Understanding spatial clustering of childhood mortality can provide a guide in targeting the interventions in a more strategic approach to the population where mortality is highest and the interventions are most likely to make an impact.\ud \ud METHODS\ud \ud Annual child mortality rates were calculated for each village, using person-years observed as the denominator. Kulldorff's spatial scan statistic was used for the identification and testing of childhood mortality clusters. All under-five deaths that occurred within a 10-year period from 1997 to 2006 were included in the analysis. Villages were used as units of clusters; all 25 health and demographic surveillance sites (HDSS) villages in the Ifakara health and demographic surveillance area were included.\ud \ud RESULTS\ud \ud Of the 10 years of analysis, statistically significant spatial clustering was identified in only 2 years (1998 and 2001). In 1998, the statistically significant cluster (p < 0.01) was composed of nine villages. A total of 106 childhood deaths were observed against an expected 77.3. The other statistically significant cluster (p < 0.05) identified in 2001 was composed of only one village. In this cluster, 36 childhood deaths were observed compared to 20.3 expected. Purely temporal analysis indicated that the year 2003 was a significant cluster (p < 0.05). Total deaths were 393 and expected were 335.8. Spatial-temporal analysis showed that nine villages were identified as statistically significant clusters (p < 0.05) for the period covering January 1997-December 1998. Total observed deaths in this cluster were 205 while 150.7 were expected.\ud \ud CONCLUSION\ud \ud There is evidence of spatial clustering in childhood mortality within the Ifakara HDSS. Further investigations are needed to explore the source of clustering and identify strategies of reaching the cluster population with the existing effective interventions. However, that should happen alongside delivery of interventions to the broader population

    Recurrent De Novo NAHR Reciprocal Duplications in the ATAD3 Gene Cluster Cause a Neurogenetic Trait with Perturbed Cholesterol and Mitochondrial Metabolism.

    Get PDF
    Recent studies have identified both recessive and dominant forms of mitochondrial disease that result from ATAD3A variants. The recessive form includes subjects with biallelic deletions mediated by non-allelic homologous recombination. We report five unrelated neonates with a lethal metabolic disorder characterized by cardiomyopathy, corneal opacities, encephalopathy, hypotonia, and seizures in whom a monoallelic reciprocal duplication at the ATAD3 locus was identified. Analysis of the breakpoint junction fragment indicated that these 67 kb heterozygous duplications were likely mediated by non-allelic homologous recombination at regions of high sequence identity in ATAD3A exon 11 and ATAD3C exon 7. At the recombinant junction, the duplication allele produces a fusion gene derived from ATAD3A and ATAD3C, the protein product of which lacks key functional residues. Analysis of fibroblasts derived from two affected individuals shows that the fusion gene product is expressed and stable. These cells display perturbed cholesterol and mitochondrial DNA organization similar to that observed for individuals with severe ATAD3A deficiency. We hypothesize that the fusion protein acts through a dominant-negative mechanism to cause this fatal mitochondrial disorder. Our data delineate a molecular diagnosis for this disorder, extend the clinical spectrum associated with structural variation at the ATAD3 locus, and identify a third mutational mechanism for ATAD3 gene cluster variants. These results further affirm structural variant mutagenesis mechanisms in sporadic disease traits, emphasize the importance of copy number analysis in molecular genomic diagnosis, and highlight some of the challenges of detecting and interpreting clinically relevant rare gene rearrangements from next-generation sequencing data

    Changes in body weight and food choice in those attempting smoking cessation: a cluster randomised controlled trial

    Get PDF
    &lt;p&gt;&lt;b&gt;Background:&lt;/b&gt; Fear of weight gain is a barrier to smoking cessation and significant cause of relapse for many people. The provision of nutritional advice as part of a smoking cessation programme may assist some in smoking cessation and perhaps limit weight gain. The aim of this study was to determine the effect of a structured programme of dietary advice on weight change and food choice, in adults attempting smoking cessation.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methods:&lt;/b&gt; Cluster randomised controlled design. Classes randomised to intervention commenced a 24-week intervention, focussed on improving food choice and minimising weight gain. Classes randomised to control received "usual care".&lt;/p&gt; &lt;p&gt;&lt;b&gt;Results:&lt;/b&gt; Twenty-seven classes in Greater Glasgow were randomised between January and August 2008. Analysis, including those who continued to smoke, showed that actual weight gain and percentage weight gain was similar in both groups. Examination of data for those successful at giving up smoking showed greater mean weight gain in intervention subjects (3.9 (SD 3.1) vs. 2.7 (SD 3.7) kg). Between group differences were not significant (p=0.23, 95% CI -0.9 to 3.5). In comparison to baseline improved consumption of fruit and vegetables and breakfast cereal were reported in the intervention group. A higher percentage of control participants continued smoking (74% vs. 66%).&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions:&lt;/b&gt; The intervention was not successful at minimising weight gain in comparison to control but was successful in facilitating some sustained improvements in the dietary habits of intervention participants. Improved quit rates in the intervention group suggest that continued contact with advisors may have reduced anxieties regarding weight gain and encouraged cessation despite weight gain. Research should continue in this area as evidence suggests that the negative effects of obesity could outweigh the health benefits achieved through reductions in smoking prevalence.&lt;/p&gt

    Analysis of gene expression from the Wolbachia genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis

    Get PDF
    The α-proteobacterium Wolbachia is probably the most prevalent, vertically transmitted symbiont on Earth. In contrast with its wide distribution in arthropods, Wolbachia is restricted to one family of animal-parasitic nematodes, the Onchocercidae. This includes filarial pathogens such as Onchocerca volvulus, the cause of human onchocerciasis, or river blindness. The symbiosis between filariae and Wolbachia is obligate, although the basis of this dependency is not fully understood. Previous studies suggested that Wolbachia may provision metabolites (e.g., haem, riboflavin, and nucleotides) and/or contribute to immune defense. Importantly, Wolbachia is restricted to somatic tissues in adult male worms, whereas females also harbor bacteria in the germline. We sought to characterize the nature of the symbiosis between Wolbachia and O. ochengi, a bovine parasite representing the closest relative of O. volvulus. First, we sequenced the complete genome of Wolbachia strain wOo, which revealed an inability to synthesize riboflavin de novo. Using RNA-seq, we also generated endobacterial transcriptomes from male soma and female germline. In the soma, transcripts for membrane transport and respiration were up-regulated, while the gonad exhibited enrichment for DNA replication and translation. The most abundant Wolbachia proteins, as determined by geLC-MS, included ligands for mammalian Toll-like receptors. Enzymes involved in nucleotide synthesis were dominant among metabolism-related proteins, whereas the haem biosynthetic pathway was poorly represented. We conclude that Wolbachia may have a mitochondrion-like function in the soma, generating ATP for its host. Moreover, the abundance of immunogenic proteins in wOo suggests a role in diverting the immune system toward an ineffective antibacterial response

    Barriers and opportunities for evidence-based health service planning: the example of developing a Decision Analytic Model to plan services for sexually transmitted infections in the UK

    Get PDF
    Decision Analytic Models (DAMs) are established means of evidence-synthesis to differentiate between health interventions. They have mainly been used to inform clinical decisions and health technology assessment at the national level, yet could also inform local health service planning. For this, a DAM must take into account the needs of the local population, but also the needs of those planning its services. Drawing on our experiences from stakeholder consultations, where we presented the potential utility of a DAM for planning local health services for sexually transmitted infections (STIs) in the UK, and the evidence it could use to inform decisions regarding different combinations of service provision, in terms of their costs, cost-effectiveness, and public health outcomes, we discuss the barriers perceived by stakeholders to the use of DAMs to inform service planning for local populations, including (1) a tension between individual and population perspectives; (2) reductionism; and (3) a lack of transparency regarding models, their assumptions, and the motivations of those generating models

    Peripheral neural cell sensitivity to mTHPC-mediated photodynamic therapy in a 3D in vitro model

    Get PDF
    Background: The effect of photodynamic therapy (PDT) on neural cells is important when tumours are within or adjacent to the nervous system. The purpose of this study was to investigate PDT using the photosensitiser, meta tetrahydroxyphenyl chlorin (mTHPC), on rat neurons and satellite glia, compared with human adenocarcinoma cell (MCF-7).Methods: Fluorescence microscopy confirmed that mTHPC was incorporated into all three cell types. Sensitivity of cells exposed to mTHPC-PDT (0–10 µg ml–1) was determined in a novel 3-dimensional collagen gel culture system. Cell death was quantified using propidium iodide and cell types were distinguished using immunocytochemistry. In some cases, neuron survival was confirmed by measuring subsequent neurite growth in monolayer culture.Results: MCF-7s and satellite glia were significantly more sensitive to PDT than neurons. Importantly, 4 µg ml–1 mTHPC PDT caused no significant neuron death compared with untreated controls but was sufficient to elicit substantial cell death in the other cell types. Initially, treatment reduced neurite length; neurons then extended neurites equivalent to those of untreated controls. The protocol was validated using hypericin (0–3 µg ml–1), which caused neuron death equivalent to other cell types.Conclusion: Neurons in culture can survive mTHPC-PDT under conditions sufficient to kill tumour cells and other nervous system cells

    Size-tunable nanoneedle arrays for influencing stem cell morphology, gene expression and nuclear membrane curvature

    Get PDF
    High-aspect-ratio nanostructures have emerged as versatile platforms for intracellular sensing and biomolecule delivery. Here, we present a microfabrication approach in which a combination of reactive ion etching protocols was used to produce high-aspect-ratio, nondegradable silicon nanoneedle arrays with tip diameters that can be finely tuned between 20 and 700 nm. We used these arrays to guide the long-term culture of human mesenchymal stem cells (hMSCs). Notably, we used the nanoneedle tip diameter to control the morphology, nuclear size and F-actin alignment of interfaced hMSCs, and to regulate the expression of nuclear lamina genes, Yes-associated protein (YAP) target genes and focal adhesion genes. These topography-driven changes were attributed to signaling by Rho-family GTPase pathways, differences in the effective stiffness of the nanoneedle arrays and the degree of nuclear membrane impingement, with the latter clearly visualized using focused-ion beam scanning electron microscopy (FIB-SEM). Our approach to design high-aspect-ratio nanostructures will be broadly applicable to design biomaterials and biomedical devices used for long-term cell stimulation and monitoring
    corecore