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[Abstract] 17 

Ramularia leaf spot (RLS) is a newly important disease of barley across temperate regions 18 

worldwide. Despite this recent change in importance the infection biology of the causal 19 

agent, Ramularia collo-cygni (Rcc) remains poorly understood.  Confocal microscopy of the 20 

infection process of two transgenic Rcc isolates, expressing either GFP or dsRed reporter 21 

markers, was combined with light microscopy during field infection to track the progression 22 

of R. collo-cygni in planta.  Infection of stomata, including the development of a previously 23 

unreported stomatopodium structure, results in symptomless development and intercellular 24 

colonisation of the mesophyll tissue.  Transition to necrotrophy is associated with breakdown 25 

of host chloroplast and the formation of aggregates of conidiophores. In addition to barley, 26 

Rcc forms a compatible interaction with winter wheat and a number of   perennial grass 27 

species. An incompatible reaction was observed with two dicotyledonous species.  These 28 
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results provide further insights into the host interactions of this fungus and suggest that RLS 29 

could be a potential threat to other agriculturally important crops. 30 

Introduction 31 

Infection by Ramularia collo-cygni (Rcc) (Sutton & Waller, 1988)  can result in Ramularia 32 

leaf spot disease on barley (RLS) leading to loss of green leaf area in infected plants  (Havis 33 

et al., 2015; Walters et al., 2008).  RLS can lead to yield losses of up to 20 per cent in barley, 34 

with an average loss in Scotland at 0.4 tonnes per hectare (Oxley & Havis., 2004). The 35 

development of PCR-based methods for detection of the fungus in barley tissue have 36 

expanded our understanding of pathogen’s life cycle particularly the importance of seed-37 

borne infection in disease etiology (Havis et al., 2014; Havis et al., 2006a; Frei et al., 2007; 38 

Taylor et al., 2009).    Recent evidence has suggested that Rcc is likely to undergo sexual 39 

reproduction (Piotrowska et al., 2016) however, there are many unknowns still surrounding 40 

the infection process and biology of this organism.  Studies using scanning electron 41 

microscopy of naturally infected leaves (Stabentheiner et al., 2009) and fluorescently labelled 42 

transgenic Rcc isolates (Thirugnanasambandam et al., 2011) have provided valuable insights 43 

to the infection process of Rcc.  The development of GFP- and dsRED tagged Rcc isolates in 44 

particular has great potential to further characterise the biology of this disease through  non-45 

invasive in planta live-cell imaging techniques. Using tagged fungal isolates in-depth spatio-46 

temporal analysis of the infection cycle beginning with conidia germinating on the leaf 47 

surface under moist conditions can be performed. The fungus enters through open stomata 48 

within 24 hours after spore germination on the leaf surface (Sutton & Waller, 1988; Walters 49 

et al., 2008) as observed in the related plant pathogen Zymoseptoria tritici (Goodwin et al., 50 

2011). Although the apparently directional growth of young Rcc hyphae towards stomata has 51 

been observed in planta, it remains unclear how the pathogen detects the presence of stomatal 52 

pores (Stabentheiner et al., 2009). Following stomatal penetration, Rcc establishes an 53 



epiphytic hyphal network (Thirugnanasambandam et al., 2011) typically extending above the 54 

infection site interconnecting colonised stomata on the leaf surfaces.  This initial 55 

development of Rcc is asymptomatic and the fungus can complete its life cycle without 56 

producing any symptoms during the entire barley growing season (Nyman et al., 2009) 57 

reminiscent of an endophytic lifestyle rather than necrotrophy. 58 

The process that triggers the transition of Rcc from asymptomatic to the symptom causing 59 

phase remains poorly understood.  Host genetic factors (McGrann et al., 2014; 2015a; 2015b) 60 

and environmental stimuli (Brown & Makepeace, 2009; Makepeace et al., 2008; Peraldi et 61 

al., 2014) appear to play important roles in the expression of RLS.  The appearance of RLS 62 

symptoms is typically observed on plants late in the growing season, usually after the ear 63 

emergence (Schützendübel et al., 2008; Walters et al., 2008). Once the necrotic lesions 64 

appear, the remainder of the leaf becomes chlorotic and then necrotic, usually starting from 65 

the tip and leaf margins (Huss, 2004). These small, pale to medium brown pepper spots are 66 

usually surrounded by a yellow halo (Salamati & Reitan, 2006).  The numerous local 67 

infections of the leaf tissue that usually occur during mass sporulation can often coalesce to 68 

form larger necrotic areas.   Periods of high leaf surface wetness are a key environmental 69 

factor that induces the rapid sporulation of the pathogen (Sutton & Waller, 1988; Huss, 2004; 70 

Havis et al., 2012).    Detailed descriptions of Rcc colonisation during the transition to 71 

disease have not been described.  Although Sutton and Waller (1988) first suggested that 72 

once inside the leaf, Rcc grows intercellularly, forming branched hyphae which colonise the 73 

mesophyll tissue, no evidence was presented to support this statement. Stabentheiner et al. 74 

(2009) showed the presence of fungal hyphae in the mesophyll layer of naturally infected 75 

samples from the field. However, it was not confirmed that these hyphae were specifically 76 

from Rcc.  As such the biological events resulting in the change from endophytic to 77 

necrotrophic growth remains undetermined.  Besides barley, Rcc has been isolated from other 78 



cereal crops including wheat, oat, rye and maize (Huss, 2004). RLS symptoms may appear 79 

regularly on rye whereas on wheat they developed only under favourable conditions. Huss et 80 

al. (2004) also noted that infection of maize was mainly asymptomatic although certain 81 

cultivars may develop characteristic disease symptoms.  Wild grass species such as such as 82 

common couch grass (Elymus repens), annual wild barley (Hordeum murinum), annual grass 83 

Echinochloa crus-galli (Huss, 2004) and silky bent-grass, Apera spica-venti (Frei, 2004) have 84 

also been suggested as potentially important sources of inoculum during later crop 85 

development. However, recent evidence has suggested the primary source of infection in 86 

barley crops is infected seed (Havis et al., 2014). In New Zealand, Rcc has also been recorded 87 

on several grass species such as Agrostis spp., Bromus cartharticus and Glyceria fluitans 88 

(Cromey et al., 2004).  These data combined with the recent demonstration that Rcc can 89 

infect and cause RLS disease on the model grass species, Brachypodium distachyon (Peraldi 90 

et al. 2014) suggests a potentially broad host range for this pathogen.  91 

The aim of this study was to characterise the foliar infection biology of Rcc on barley and 92 

other potential host- and non-host plant species through live-tissue imaging of fluorescent 93 

tagged Rcc isolates.  Improved understanding of Rcc development during host- and non-host 94 

interactions will provide insights into the host range of Rcc and offer new perspectives on the 95 

potential evolution of the fungus and any associated host specialisation.  96 

 97 

 98 

Materials and methods 99 

Fungal isolates and inoculum preparation 100 



Two Rcc field isolates collected from naturally infected leaves of the spring barley cv. 101 

Braemar and two transgenic isolates were used in this study.  The field isolates originated 102 

fromScotland, isolate B1, and Denmark, isolate DK05Rcc001.  Transgenic Rcc isolates 8B9 103 

(Rcc-8B9-GFP) and Stratego (Rcc-ST-DsRed) expressing GFP and DsRed fluorescent 104 

proteins, respectively, have been previously described (Thirugnanasambandam et al., 2011). 105 

Fungal cultures were maintained on clarified V8 juice agar (10 mM CaCO3 in 20 % (v ⁄ v) V8 106 

juice, 1.5 % agar) at 15o C in the dark.  Inoculum was prepared from mycelial fragments of 107 

Rcc isolates from two-week old spread-plates by scraping the colony surface with a sterile 108 

spatula, and then filtering through sterile glass wool in the neck of a sterile glass funnel. The 109 

mycelium harvested from a single spread plate was diluted in 5 mL sterile distilled water 110 

prior to inoculation.  111 

Plant material 112 

Barley seeds (Hordeum vulgare) cvs. Optic, Belgravia, Garner and Cocktail were germinated 113 

in pots and maintained in a glasshouse under16 h light at 18oC and 8 h dark at 16oC day/night 114 

regime. RLS resistance ratings are available for Optic, Belgravia and Garner 115 

(http://cereals.ahdb.org.uk/varieties/ahdb-recommended-lists/spring-barley-2015-16.aspx).  116 

Belgravia has the highest resistance rating (7) whereas both Optic (5) and Garner (4) are 117 

more susceptible. There is no official rating available for Cocktail although in Scottish trials 118 

this cultivar was as susceptible as Optic (Oxley & Havis, 2009).  119 

In the early infection comparative study between barley and possible alternative hosts, naked 120 

barley (Hordeum vulgare var nudum), winter wheat (Triticum aestivum), cv Alchemy, oats 121 

(Avena fatua), the perennial grasses, cocks-foot (Dactylis glomerata), Italian ryegrass 122 

(Lolium multiflorum), black grass (Alopecurus myosuroides) were germinated and grown 123 

under the same conditions as described for barley.  124 



Detached leaf assay 125 

Seeds of barley (Hordeum vulgare) cv. Optic were germinated and maintained in a 126 

glasshouse under 16 h light at 20°C and 8 h dark at 16°C until plants reached the boots 127 

swollen stage (GSZ 45-49; Zadocks et al., 1971). Detached-leaf assays were performed as 128 

described in Thirugnanasambandam et al. (2011) and Newton et al. (2001) with some 129 

modifications. Briefly, leaf sections approximately 3-5 cm in length were taken from the 130 

second and fifth – sixth leaf, gently abraded near the centre of the adaxial surface with a soft 131 

paintbrush to disrupt the surface wax structure, and placed abaxial surface down on 0.5 % 132 

distilled water agar containing 150 mg L-1 benzimidazole (Sigma-Aldrich, UK) in sealed 133 

polystyrene boxes (79 x 47 x 22 mm; Stewart Plastics Ltd, Surrey, UK). The abraded area of 134 

each leaf was inoculated with 10 µL of the Rcc mycelial fragment suspension and the boxes 135 

incubated in a controlled environment cabinet (Model LT1201, Leec Ltd, Nottingham, UK) 136 

at 17°C, light intensity 200 µmolm-2s-1.  137 

 138 

Whole plant inoculation assay 139 

Spot-inoculation of whole barley leaves was performed as described for detached leaf assays 140 

(Thirugnanasambandam et al., 2011; Newton et al., 2001). Up to ten inoculation sites per leaf 141 

were drop-inoculated with 10 µL of mycelial fragments. For second leaves, inoculum was 142 

placed in the central region of a leaf blade whilst later leaves e.g. F-1 and flag, were 143 

inoculated on opposite sides of a midrib.  Leaf segments 2 - 3cm long with the inoculation 144 

zone in the centre were then mounted and analysed microscopically on subsequent days 145 

throughout the life span of each infected barley plant. At least five inoculated leaves were 146 

studied for each time point. The experiment was repeated three times.  147 

  148 



Confocal laser scanning microscopy (CLSM) conditions 149 

Plant material inoculated with transgenic Rcc isolates was examined using, a Leica SP2 150 

CLSM (Leica Ltd, London, UK) on a DM6000 microscope fitted with a FI ⁄RH filter block 151 

(excitation filter BP 490 ⁄ 15, dichroic mirror 500, emission filter BP 525 ⁄ 20; excitation filter 152 

BP 560 ⁄ 25, dichroic mirror 580, emission filter BP 605 ⁄ 30) and Leica water-dipping lenses 153 

(HCX APO L10x  ⁄ 0.30 W U-V-1, L20x  ⁄ 0.50 W U-V-1, L40x  ⁄ 0.80 W U-V-1 or L63x  ⁄ 154 

0.90 W U-V-1).  GFP fluorescence was imaged at the excitation wavelength of 488 nm and 155 

emission was collected at 500–530 nm. 156 

Plant cell wall autofluorescence signal was detected by sequential imaging using HeNe laser 157 

for GFP detection as described above, and a lime laser at the excitation wavelength of 541 158 

nm and peak emission was collected at 550-580 nm light wavelengths that were emitted by 159 

plant cell walls. 160 

The autofluorescence signal from chlorophyll was collected simultaneously at light 161 

wavelengths between 650 and 700 nm. Transmission images were captured using the 162 

microscope transmission detector of the microscopes to collect 488-nm light passing through 163 

the leaf. Unless otherwise stated, images are overlay projections of z-stacks presented as 164 

maximum intensity projections and were assembled and edited using image editing software 165 

MacBiophotonics® ImageJ or Adobe Photoshop® CS5 Extended Edition. 166 

Light microscopy conditions 167 

Light microscopy was performed either using a Reichert-Jung Polyvar Photomicroscope 168 

(Reichert Technologies, Ney York, USA) with brightfield or differential interference contrast 169 

(DIC) optics, and 40x (1.0 NA) plan apochromat objective, or using a Nikon Eclipse TE2000 170 

inverted microscope with DIC optics and a 40x (1.0 NA) plan fluor objective (Nikon 171 

Corporation, Tokyo, Japan). Images from the Polyvar microscope were acquired by Canon 172 



EOS 600d SLR camera whilst images from the Eclipse microscope were captured with a 173 

DXM1200F camera and ACT-1 software. 174 

Aniline blue staining 175 

Leaf material from field samples exhibiting typical RLS symptoms were cleared and fixed 176 

with 1:1 v/v solution of glacial acetic acid and absolute ethanol until chlorophyll was 177 

completely removed. Fixed leaf samples were submerged twice for 30 minutes in sterile 178 

distilled water to remove excess acetic acid/ ethanol solution, and subsequently dehydrated 179 

with a series of increasing concentration of ethanol (25, 50, 75, 85, 95 and 100 %). Samples 180 

were stained with aniline blue stain (aniline blue/ ethanol 1:1 v/v) for 15, 30 and 60 minutes. 181 

To remove excess of aniline blue, leaves were briefly destained with absolute ethanol prior to 182 

mounting on a microscope slide.  183 

 184 

R. collo-cygni detection in seeds 185 

Rcc levels were monitored in barley seeds used in this study by quantitative PCR (qPCR 186 

analysis (Taylor et al., 2009).  Genomic DNA was extracted from 100 seeds by milling 187 

samples in a mixer mill Retsch MM200 in to a fine powder. DNA was extracted from 1 g of 188 

finely ground material using the method of Fraaije et al. (1999).  All batches of barley seeds 189 

used in inoculation experiments were confirmed free of Rcc DNA.  Seed samples from the 190 

winter wheat trials in 2009 and 2010 were tested for the presence of Rcc DNA. DNA was 191 

extracted as for barley except a 200 seed sample was used for milling.  Rcc DNA was 192 

detected and quantified using qPCR as previously described (Taylor et al., 2010). 193 

 194 

Results 195 



Symptomless infection characteristics 196 

During asymptomatic development, infection was clearly restricted to the leaf surface and 197 

substomatal cavities. A thin spider web-like network of hyphae, driven by regular hyphal 198 

fusion, radiated from the inoculation site and colonised leaf surface. This epiphytic hyphal 199 

network appeared well organised as the pathogen used epidermis cell junctions and 200 

topography of the leaf for colony establishment (Fig 1a)..  201 

Similarly to the related plant pathogens, Z. tritici and Pseudocercospora fijiensis (syn. 202 

Mycosphaerella fijiensis), Rcc gained entry into the host tissue by direct penetration of open 203 

stomatal pores.  Development of a morphologically distinct structure, a stomatopodium, was 204 

observed at the hyphal tip prior to stomatal penetration (Fig 1a). Similar stomatopodium, 205 

known to occur in P. fijiensis,  has not been reported previously in Rcc and appeared 206 

spherical or cylindrical in shape and somewhat swollen with the diameter of approximately 4 207 

- 5 µm which was much thicker than leaf surface colonising hyphae. Stomatopodia could also 208 

develop as side branches of the epiphytic hyphae which facilitated penetration of stomatal 209 

pores (Fig 1b). Following entry to the substomatal cavity, stomatopodia started branching 210 

becoming multibranched, thick conidiogenous basal aggregates by 7 dpi (Fig 1c).  As the 211 

fungus developed, an increasing number of stomata with coniodiogenous aggregates were 212 

observed (Fig 1d).  Characteristic swan necked Rcc conidiophores rising from mycelial 213 

aggregates developed from 14 dpi onwards (Fig 1e). The mesophyll layer is then colonised 214 

by thick hyphal extensions. At the edge of the colonised area the fungus was able to colonise 215 

more of the mesophyll layer after entering the leaf via stomata (Fig 1f).  Throughout this 216 

initial development leaves remained asymptomatic with typical RLS not observed until 217 

approximately 4 weeks post inoculation. 218 

Transition of the fungal life style and symptomatic phase  219 



A transition in fungal growth was observed from 20 dpi as endophytic colonisation 220 

progressed into necrotrophy. At this stage Rcc exhibited an invasive growth into mesophyll 221 

layer of the leafh. Mesophyll colonisation appeared intercellular, developing thick endophytic 222 

hyphae radiating outwards from stomatal cavities (Fig 1g).  Diameter of the intercellular 223 

hyphae had a range of approximately 3 - 5 µm, compared to epiphytic hyphae with an 224 

average diameter of 1.2 µm. The intercellular growth of Rcc within the mesophyll layer had a 225 

‘brickwork-like’ pattern.  This pattern appeared highly regulated (Fig 1h), with long hyphae 226 

typically extending parallel to leaf axis connected by side branches every –two to three rows 227 

of mesophyll cells. No invasion of plant cells was observed and the hyphae did not cross the 228 

leaf veins.   Intercellular hyphae were much thicker than those growing on the surface and 229 

substomatal cavity and were usually highly vacuolated (Fig 1i). 230 

The development of a lesion around the infected stomata usually occurred 5 - 7 days after 231 

first observation of the aggressive colonisation of palisade mesophyll, around 25-27dpi. 232 

Lesion formation was associated with a loss of the chlorophyll fluorescence signal suggesting 233 

collapse of the cells in the affected areas (Fig 2 a1). The newly formed, small lesions, called 234 

pepper spots were clearly visible from 25 dpi and were associated with red discolouration of 235 

the surrounding tissue, presumably related to production of the rubellin toxins (Fig 2 a2). 236 

Mesophyll cells that collapsed due to the infection by intercellular hyphae emitted 237 

autofluorescence (Fig 2b).  238 

As the lesion expanded encompassing the branched endophytic mycelium, the fungus 239 

appeared to develop long, but less-branched hyphae and actively grew away from the necrotic 240 

area (Fig 2c). This fungal growth habit was observed within leaf tissue presenting as a 241 

chlorotic halo surrounding the developing lesion. No penetration of vascular bundles was 242 

observed at any stage of infection progression (Fig 2c, 2d).  Long chains of conidiophores 243 



emerged through the collapsed epidermis (Fig 2e) which caused necrotic symptoms on the 244 

leaves (Fig 2f) 245 

Simultaneous infection of barley by GFP- and DsRed- tagged Rcc isolates 246 

In a whole plant inoculation assay, spring barley cv. Optic was challenged with two 247 

transgenic isolates Rcc-8B9-GFP and Rcc-ST-DsRed to observe whether these isolates could 248 

coexist and simultaneously establish infection on the same leaf.  Prior to the co-inoculation 249 

experiment, the colonisation of barley by the transgenic isolate Rcc-ST-DsRed was verified 250 

in planta. Rcc-ST- DsRed colonisation was identical to the infection of barley by the isolate 251 

Rcc-8B9-GFP (Fig 2g). Co-inoculation experiments revealed that both isolates were able to 252 

coexist within a small area of the leaf. However, both isolates during the establishment of 253 

their epiphytic networks appeared to avoid exploring the same grooves between epidermis 254 

cells (Fig 2h). Although, the sporulation of both fungal strains developed at 15 dpi, no 255 

instance of simultaneous formation of spores of both genotypes at one stoma was noted, 256 

possibly suggesting competition for the ecological niche (data not shown). 257 

In all examined plant material, the number of substomatal aggregates appeared higher for 258 

Rcc-8B9-GFP than for Rcc-ST-DsRed.  Numbers of stomatal aggregates were counted as an 259 

indication of successful infection for both isolates across ten previously collected low 260 

magnification images of infection development at 7 dpi. T-test analysis showed that there was 261 

significant difference between the numbers of the observed basal aggregates per leaf analysed 262 

with Rcc-8B9-GFP producing significantly more aggregates than Rcc-ST-DsRed (P = 263 

0.004721; mean values 5.3 and 2.8, for Rcc-8B9-GFP and Rcc-ST-DsRed infected samples, 264 

respectively).  265 

Analysis of naturally infected leaf samples by light microscopy 266 



To validate the results obtained from inoculation experiments an additional analysis of the 267 

latter stages of Rcc development following leaf senescence was examined in naturally heavily 268 

infected barley field samples from two UK sites ( West Sussex cv Optic and Bush Estate, 269 

Midlothian cv Cocktail). The aniline blue method proved reliable for staining of fungal 270 

structures present on the leaf surface. However, intercellular hyphae colonising the mesophyll 271 

layer of leaves, observed with the confocal microscopy of the transgenic isolates, remained 272 

unstained and could not be readily visualised by conventional light microscopy. 273 

Aniline blue staining of naturally infected field sampled leaves with RLS symptoms revealed 274 

massive sporulation within the necrotic lesions (Fig 3a).  The majority of sporulating 275 

conidiophores were observed as fungal aggregates erupting from stomata (Fig 3b). Towards 276 

the edge of the necrotic lesion, instances of sporulation associated with the infection of 277 

stomata became much less frequent. Instead, conidiophores were observed erupting through 278 

the epidermis anticlinal walls (Fig 3b, 3c). Furthermore, the long continuous chains of 279 

conidiophores also developed in large numbers in grooves between epidermal cells directly 280 

adjacent to vascular bundles (Fig 3d). We also observed such chains of conidiophores 281 

following  inoculation with hyphal fragments of the transgenic isolate Rcc-8B9-GFP (Fig 2e) 282 

where they were linked to intercellular mycelium in the mesophyll that was clearly restricted 283 

by vascular bundles (Fig 1h; Fig 2c). At the edge of the lesion observed on the inoculated 284 

detached leaves, within a chlorotic area, sporulation was rarely associated with substomatal 285 

cavities (Fig 3d).  Here sporulation was observed, where chains of conidiophores burst 286 

through the anticlinal grooves of adjacent epidermis cells (Fig 2e). However, 287 

autofluorescence was also detectable around dead inoculum. In the region of leaf where dead 288 

hyphae were prevalent, the development of a lesion has occurred. Lesion formation was 289 

indicated by gradual fading and subsequent loss of detectable chlorophyll autofluorescence 290 

signal (Fig 2d).  The similar infection stages observed between naturally infected field 291 



samples and detached leaves inoculated with hyphal fragments confirms the suitability of the 292 

inoculation technique for studying this pathogen. 293 

 294 

Effect of varietal variation on Rcc colonisation of spring barley 295 

Four cultivars of spring barley, Belgravia, Garner, Optic and Cocktail that differ in their 296 

official AHDB resistance ratings for RLS were inoculated with Rcc-8B9-GFP to examine 297 

whether or not different levels of fungal development are exhibited during asymptomatic 298 

infection of these different varieties. 299 

No apparent differences in Rcc development were observed during early stages of 300 

colonisation in any of the cultivars. Isolate Rcc-8B9-GFP was able to infect each of the 301 

cultivars at a similar rate starting from establishing an organised epiphytic hyphal network 302 

and infecting stomata. However, first instance of a mature form of conidiogenous aggregates 303 

and sporulation was on Cocktail as early as 8 dpi and the slowest development of these 304 

structures was found on Belgravia at 12 dpi, which also had the highest AHDB resistance 305 

rating to RLS. Optic and Garner, which have the lower RLS resistance ratings, showed the 306 

first signs of conidiogenous aggregates and sporulation at 10 dpi (results not shown) 307 

Analysis of alternative hosts of Rcc (supplementary data) 308 

Similarly to development in barley, isolate Rcc-8B9-GFP gained entry into wheat plants via 309 

stomata without triggering any apparent resistance response, suggesting a compatible 310 

interaction had occurred (Fig 4a). The fungus developed an organised hyphal network and as 311 

infection progressed, typical hyphal aggregates were observed in stomatal cavities which 312 

subsequently gave rise to conidiophores and conidia (Fig 4b). Since the fungus was able to 313 

colonise wheat and  sporulate without any obvious cell death response from the plant, this 314 



observation confirms that wheat could be a potentially very important Rcc  host and the 315 

fungus could survive from season to season overwintering in wheat crops.  To assess the 316 

potential risk Rcc infection may pose to wheat, seeds of different recommended and 317 

candidate wheat varieties from Scottish field trial sites were tested for the presence of Rcc 318 

DNA using qPCR.  Rcc DNA was detected in all 35 wheat varieties tested (Table 1).  Rcc 319 

DNA levels ranged from 0.002 pg to 0.681 pg with a mean value of 0.127 pg per 100 ng of 320 

DNA.  The varieties Claire and Timber had the lowest levels of Rcc DNA whereas Cassius 321 

was the highest (Table S1).  These values are much lower than those typically observed in 322 

barley seeds (Havis et al., 2014). 323 

Various grass species have been implicated as hosts for Rcc (Cromey et al., 2004; Frei, 2004; 324 

Huss et al., 2004; Peraldi et al., 2014).  Initial infection of Italian ryegrass (L. mulitiflorum) 325 

occurred in identical manner as observed in barley and wheat plants, with penetration of 326 

stomata by stomatopodia (data not shown) and establishing spiderweb-like epiphytic network 327 

of hyphae. However, colonisation of subsequent stomata followed by sporulation appeared to 328 

be more rapid and abundant in Italian ryegrass with spore formation occurring as early as 5 329 

dpi compared to 8 and 10 dpi for barley and wheat, respectively. 330 

Development of Rcc on Cock’s foot (D. glomerata) suggested an incompatible interaction.   331 

Although stomatopodia formation and  attempts to infect were observed (Fig 4c), no further 332 

development, such as substomatal aggregates, was recorded. An initial epiphytic hyphal 333 

network formed, but this hyphal growth appeared to be much less organised compared to that 334 

observed on other hosts (Fig 4c).  Rcc hyphae appeared to rapidly collapse as indicated by the 335 

loss of GFP expression (Fig 4d).  336 

Discussion 337 



The recent establishment of RLS as an important disease of barley has led to renewed efforts 338 

to understand the biology of this disease (Havis et al., 2015).  The ability of the fungus to 339 

complete its life cycle asymptomatically (Havis et al., 2014) has led to suggestions that is 340 

actually an endophyte  (Salamati & Reitan, 2006).  The results presented here indicate that 341 

Rcc invades and colonises barley extensively, growing inter-cellularly through the mesophyll 342 

layer in the absence of disease symptoms.  The transition to disease is associated with stress 343 

in the host plant e.g. waterlogging, light stress or post anthesis and is accompanied by an 344 

apparent loss of host chlorophyll (Makepeace et al., 2008; Schutzendubel et al., 2008).     345 

 Recent scanning electron microscopy (SEM) examinations of naturally infected leaves from 346 

the field have provided an initial insight into Rcc development on barley (Stabentheiner et al., 347 

2009) but successful transformation of the fungus with fluorescent marker tags has facilitated 348 

studies of asymptomatic infection on barley (Thirugnanasambandam et al., 2011). Studies on 349 

Rcc are challenging due to its sparse or even lack of sporulation in vitro (Sutton & Waller, 350 

1988).  351 

Rcc infection begins with the rapid formation of a mycelial network on the surface of the 352 

inoculated leaf. Penetration of leaf tissue occurred always through the stomatal pore as 353 

previously reported (Stabentheiner et al., 2009; Thirugnanasambandam et al. 2011). This 354 

mode of entry appears common to members of the Mycosphaerellae fungi including Z. tritici 355 

and P. fijiensis (Palmer & Skinner, 2002; Churchill, 2011).  Stomatal penetration may be less 356 

likely to trigger defence reactions caused by the damage of host tissues during infection in 357 

line with the stealth mode of pathogenesis suggested for Z. tritici (Goodwin et al., 2011). The 358 

observation that the host epidermal cells remained intact during the early stages of Rcc 359 

infection is consistent with this hypothesis but may also indicate endophytic development is 360 

important for Rcc.  Both Stabentheiner et al. (2009) and Thirugnanasambandam et al. (2011) 361 

stated that no specialised penetration structures were formed by Rcc during penetration of 362 



stomatal pores. Although in this study invasive hyphae were observed to enter open stomata 363 

without producing any morphologically distinct structure, penetration of a stoma was often 364 

facilitated by a structure called a stomatopodium. This structure appeared to form as a 365 

thickening of the invasive hypha that forms above the stomatal pores entering between guard 366 

cells (Fig 1b). Stomatapodia were frequently but not exclusively associated with penetration 367 

of stomata (Fig1b). Furthermore, it was observed that this structure formed on the leading tip 368 

of hypha but also could develop as side branches extending from hyphal network. Similar 369 

structures have been reported previously in the closely related fungus, P. fijiensis (Balint-370 

Kurti et al., 2001) but this is the first report of such a structure in Rcc. 371 

The development of an apparently organised network of epiphytic hyphae confirms previous 372 

observation that invasive hyphal networks appear on leaf surface prior to penetration but the 373 

method of stomatal recognition remains unclear. It remains to be determined which 374 

mechanisms are involved in this growth habit. Once inside substomatal cavities, stomatopodia 375 

develop into thick conidial bases (Fig 1c) as observed by Thirugnanasambandam et al. (2011). 376 

These fungal aggregates in the substomatal cavity remain connected by the epiphytic hyphal 377 

network on the leaf surface. Within these aggregates, which comprised a group of swollen, 378 

often highly vacuolated cells the characteristic Rcc swan-neck conidiophores are produced. 379 

Initially, the typical sporulation rising from subsequent stomatal pores was associated with 380 

some local necrosis of tissue surrounding stomata. This could be due to mechanical damage 381 

during conidiophore emergence but RLS macroscopic symptoms were not observed until at 382 

least 25 dpi. However, we have determined that during later stages of development, from 20 383 

dpi (Fig 1g), the substomatal aggregates begin expansion into mesophyll tissue surrounding the 384 

cavities and produced an organised endophytic network of swollen, heavily branched hyphae 385 

that colonise intercellular space between mesophyll cells. The substomatal aggregates were 386 

associated with every successful stomatal  infection of plant hosts in this study.  387 



Intercellular growth was observed after 25 dpi, but the aggregates that developed by this time 388 

point at the edge of the infection did not immediately produce spores.  Instead they directly 389 

expanded into the mesophyll layer.  Leaves still appeared asymptomatic up to a week after the 390 

initial colonisation of the mesophyll suggesting Rcc growth was still endophytic at this stage. 391 

These endophytic mycelium eventually gave rise to mass sporulation via stomata and through 392 

the epidermis at cell junctions, inducing massive collapse of mesophyll tissue and subsequent 393 

RLS symptom expression.  This could indicate a change in fungal growth from endophytic to 394 

necrotrophic. After epidermal cells  collapse heavy colonisation of the intercellular space 395 

between mesophyll cells was observed.  Collapse of mesophyll tissue in wheat is associated 396 

with proliferation of Z. tritici hyphae (Kema et al., 1996) potentially due to a release of 397 

intracellular nutrients into the apoplast (Keon et al., 2007).  398 

It has been proposed that Rcc is an opportunistic saprophyte that is able to recognise and 399 

respond to a stress response in the host, be it the switch from vegetative to reproductive phase 400 

(Schutzendübel et al., 2008), exposure to extreme environmental stress (Brown & Makepeace 401 

et al., 2009; Makepeace et al., 2008; Peraldi et al., 2014), or altered host stress and cell death 402 

regulation pathways (McGrann et al., 2014; 2015a; 2015b) by becoming a necrotrophic 403 

pathogen.  These characteristics are typical of plant endophytes that can adapt rapidly to the 404 

growth habit and internal environment of the host that they have colonised (Schulze &Boyle, 405 

2005).   Seed-borne transmission of Rcc (Havis et al., 2014) together with asymptomatic 406 

sporulation, seen here and in previous work (Thirugnanasambandam et al., 2011) supports the 407 

classification of Rcc as an endophyte.  This suggests that Rcc inoculum may spread within a 408 

barley crop during the growing season without apparent symptoms, with disease only 409 

occurring under specific host and environmental conditions. 410 

Several authors have reported the isolation of Rcc from many crop and perennial grass species 411 

in addition to barley (Huss, 2004; Frei, 2004; Cromey et al., 2004). Alternative hosts should 412 



therefore be considered as another important source of RLS within the growing season as they 413 

can facilitate pathogen survival through the winter period becoming a source of inoculum 414 

between the growing seasons. Winter wheat is one of the most important crops in the world 415 

and has been reported to a compatible host for Rcc (Huss, 2004). Asymptomatic infection of 416 

winter wheat is similar to barley suggesting that not only could wheat be a source of fungal 417 

inoculum for barley, it can potentially develop the disease on its own. The pathogen behaved in 418 

the same way and pace on wheat as in barley, and was able to sporulate therefore completing 419 

the life cycle. Furthermore, Rcc DNA was detected in wheat seeds suggesting the fungus can 420 

be potentially seed borne in this host (Table 1, Table Sp1).  This could have serious 421 

implications for wheat production worldwide. Further study of the Rcc – wheat system is 422 

merited. 423 

Infection on Italian ryegrass (L. multiflorum) was also akin the barley infection but more rapid 424 

indicated by much faster development of substomatal aggregates. Whether Rcc originated from 425 

perennial grasses and subsequently evolved to be the pathogen of the main cultivated crops is 426 

unknown. Evolutionary adaptation observed as a host jump from  native grasses to crops have 427 

previously been described for of the wheat pathogen Z. tritici (Stukenbrock et al., 2007; 2012). 428 

The findings described here suggest that ryegrass could be a major inoculum source for Rcc as 429 

this grass species can often be seen growing next to crop fields. 430 

Results from the inoculation experiments with D. glomerata showed that this grass species is 431 

not a host for Rcc. The fungus was not able to establish infection despite repeated attempts in 432 

independent inoculation experiments. Interestingly, the initial development of the fungus was 433 

similar to barley and other hosts with some directional growth towards stomata and attempts 434 

to penetrate observed. However, no further development occurred suggesting that 435 

mechanisms of incompatibility could exhibit themselves only during the infection of stomata  436 



RLS has now become a plant disease of major importance for barley growers, despite being 437 

known for over a century (Cavara, 1893). Factors that contribute to the increase in prevalence 438 

of RLS remain to be conclusively determined. It is therefore essential to employ all available 439 

tools and resources, such as the fluorescently tagged Rcc isolates (Thirugnanasambandam et 440 

al., 2011), to increase our understanding of Rcc infection of barley and to study other 441 

potentially important sources of the disease, such as alternate hosts. For determination of 442 

different stages of the lifecycle of this fungus, transgenic Rcc isolates can be used to further 443 

investigate the spread of inoculum from seeds to plants and plants to seeds, and in addition, to 444 

address the question of whether Rcc is truly persisting in barley as an endophyte. Coupled 445 

with the PCR based techniques that enable the quantification of Rcc in infected leaf and seed 446 

material (Taylor et al., 2010), visual analysis of the infection could provide knowledge on 447 

inoculum pressure required on the host before disease symptoms are seen and determine the 448 

trophic niche inhabited by this fungus. 449 
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Table1  Detection of Rcc in wheat samples from 2009 and 2010 trials in Central Scotland 

Year Region Crop No of 
varieties 

Mean Rcc 
DNA (pgrams) 
(+S.E.) 

Range Rcc 
DNA range 
(pgrams) 

2009 Central 
Scotland 

Winter wheat 
(untreated) 

35 0.49 (+ 0.33) Cassius (0.68 
pg) – Claire 
(0.002pg) 

2010 Central 
Scotland 

Winter wheat 
(Full 
fungicide 
programme) 

35 5.14 (+ 0.078) Viscount 
(14.32 pg) – 
Einstein (0.38 
pg) 

LSD 
(P=0.05) 

   0.66  

 



Table 2  Inoculation of transformed Rcc into various plant species in controlled experiments 

Species 
name  

Reason for use  Description of growth  1 2 3 4 5 6 

Hordeum 
vulgare  

H. vulgare, or barley is Rcc 
known host. This is a control 
to compare the extent of 
infection of other species 
against.  

Hyphae grow on leaf surface, following 
leaf grooves, prior to entry via stomata. 

+ + + + + + 

Hordeum 
vulgare var. 
nudum  

Naked Barley is a variant of 
barley that is easily detachable 
from its seed coat or hull and 
provides a second variant of 
barley.  

Similar colonisation and infection to barley 
but no sporulation observed. 

+ + + + + + 

Triticum 
aestivum cv. 
emerald  

A reported host of Rcc (Huss, 
2004) and a major crop.  

Colonisation progressed in a very similar 
manner to H. vulgare. 

+ + + + + + 

Lolium 
multiflorum  

Common name annual 
ryegrass. Previously identified 
as a host of Rcc (Sprague, 
1950).  

Hyphal growth on the surface disorganised 
but some infection of stomata observed. 

- - - - - - 

Alopecurus 
myosurides  

A major weed of crops found 
in Europe. 

Growth of hyphae towards stomata and 
evidence of potential sporulation. 

+ - + + + + 

Dactylis 
glomerata  

A perennial grass sown in 
temperate pastures and also a 
common wild grass in Britain.  

Colonisation of leaf surface and 
unsuccessful attempts to infect observed.  

+ + + - - - 

 
1. Directed growth (similar to H. vulgare) 
2. Stomatapodium formation 
3. Hyphal thickening 
4. Stomatal infection 
5. Sporulation on leaf surface 
6. Conidiophore formation 



 

 



Supplementary Table 1 – Rcc DNA levels in winter wheat from Central Scotland 

Variety 2009 2009 Variety 2010 2010 

 
Rcc DNA 
(pgrams) S.E. 

 Rcc DNA 
(pgrams) S.E. 

Alchemy 0.018 0.017 Alchemy 9.745 0.215 
Battalion 0.228 0.201 Beluga 4.328 0.215 
Beluga 0.202 0.048 Cassius 6.193 0.215 
Cassius 0.681 0.459 Chilton 4.204 0.215 
Claire 0.002 0.002 Cocoon 1.768 0.215 
Conqueror 0.016 0.009 Conqueror 3.480 0.215 
Cordiale 0.292 0.229 Cordiale 3.660 0.215 
CPBT W 144 0.089 0.043 Delphi 4.452 0.215 
CPBT W 148 0.190 0.034 Denman 3.133 0.215 
CPBT W 150 0.33 0.206 Duxford 1.351 0.215 
CPBT W 152 0.334 0.167 Einstein 0.377 0.215 
Duxford 0.066 0.007 Gallant 13.950 0.215 
Edmunds 0.053 0.016 Grafton 1.780 0.215 
Einstein 0.042 0.042 Gravitas 5.676 0.215 
Gallant 0.103 0.026 Horatio 5.292 0.215 
Gladiator 0.013 0.006 Invicta 4.703 0.215 
Glasgow 0.171 0.056 JB Diego 5.613 0.215 
Grafton 0.063 0.049 KWS Gator 5.818 0.215 
Humber 0.025 0.019 KWS Podium 5.548 0.278 
Invicta 0.118 0.013 KWS Santiago 13.470 0.215 
Istabraq 0.022 0.012 KWS Saxtead 9.713 0.215 
JB-Diego 0.023 0.014 KWS Solo 1.108 0.215 
Ketchum 0.311 0.133 KWS Sterling 2.188 0.277 
Kingdom 0.067 0.042 KWS Target 2.578 0.215 
Marksman 0.015 0.015 Monterey 4.282 0.215 
Oakley 0.067 0.001 Oakley 1.462 0.215 
Panorama 0.07 0.07 Relay 5.304 0.373 
PBI-40636 0.051 0.039 Scout 3.780 0.215 
Qplus 0.207 0.179 Solstice 6.095 0.215 
Robigus 0.036 0.003 Stigg 4.798 0.215 
Scout 0.100 0.059 Torch 5.549 0.373 
Solstice 0.081 0.042 Trident 7.443 0.215 
Timber 0.004 0.002 Tuxedo 5.927 0.215 
Viscount 0.239 0.120 Viscount 14.320 0.215 
Walpole 0.107 0.079 Warrior 0.838 0.215 
 


