66 research outputs found

    Downdip development of the Ni‐Cu‐PGE‐bearing mafic to ultramafic uitkomst complex, Mpumalanga province, South Africa

    Get PDF
    The about 2055-Ma-old mafic to ultramafic Uitkomst Complex in the Mpumalanga Province of South Africa hosts the low-grade-large-tonnage Ni-Cu-PGE deposit, Nkomati. The complex is regarded to represent a satellite to the Bushveld Complex and a feeder to an eroded magmatic reservoir in the southeast. Aeromagnetic surveys and previous drilling indicated an overall northwestern-downdip extension of the complex, but the question is to what extent and in which expression can the complete intrusion be found under cover in the northwest? Answering this, a mineralogical, geochemical and geochronological investigation of a borehole intersection of the whole complex at Little Mamre was carried out, using petrography, XRF, EPMA and LA-ICP-MS U–Pb analyses of zircons for age determination. Although the total thickness of the rock units is larger than to the southeast, emplacement, litho- and mineral chemistry trends, expression of alteration mineralogy and style of sulphide mineralisation are similar. The amount of sulphide mineralisation is on average less than in the southeast. The upper ultramafic unit contains, more frequently, pegmatoidal sections, and the Chromitiferous Harzburgite unit has less massive chromitite layers than the southeastern parts of the complex, whereas the gabbro(-norite) units contain more interstitial liquid with late-stage minerals. The findings confirm that the anvil-shaped intrusion in cross section continues with increased thickness towards northwest at a shallow dip; although approaching the deeper part of the igneous reservoir, mineral compositions are partially more evolved. The overall mineralogical consistency downdip supports a situation of multiple magma replenishment along a flat-lying, northwest–southeast trending conduit, resulting in an evolved cumulus mineral assemblage in the upper part

    Karst-bauxite formation during the Great Oxidation Event indicated by dating of authigenic rutile and its thorium content

    Get PDF
    Aluminium (Al)-rich palaeosols—i.e., palaeobauxite deposits—should have formed in karst depressions in carbonate sequences as a result of acidic solutions from oxidative weathering of sulfide minerals during the Great Oxidation Event (GOE), but no GOE-related karst-palaeobauxite deposits have so far been recorded. Here, we report results of in situ uranium–lead (U–Pb) dating of detrital zircon and spatially associated rutile from a metamorphosed Al-rich rock within a dolomite sequence in the Quadrilátero Ferrífero (QF) of Minas Gerais, Brazil, known as the Gandarela Formation. Rutile grains are highly enriched in thorium (Th = 3–46 ppm; Th/U ratio = 0.3–3.7) and yielded an isochron, lower-intercept age of ca. 2.12 Ga, which coincides with the final phase of the GOE—i.e., the Lomagundi event. The rutile age represents either authigenic growth of TiO2_2 enriched in Th, U and Pb during bauxite formation, or subsequent rutile crystallisation during metamorphic overprint. Both cases require an authigenic origin for the rutile. Its high Th contents can be used as a palaeoenvironmental indicator for decreased soil pH during the GOE. Our results also have implications for iron (Fe)-ore genesis in the QF. This study demonstrates that in situ U–Th–Pb-isotope analyses of rutile can place tight constraints on the age and nature of palaeosols

    Zircon of Triassic Age in the Stuttgart Formation (Schilfsandstein)—Witness of Tephra Fallout in the Central European Basin and New Constraints on the Mid-Carnian Episode

    Get PDF
    The Carnian Stuttgart-Formation (Schilfsandstein) of the Central European Basin contains relics of Triassic volcanic detritus in form of euhedral zircon grains and authigenic analcime. Multiple LA-ICP-MS spot analyses of single zircon crystals from an outcrop near Heilbronn (SW Germany) yielded weighted average 206^{206}Pb/238^{238}U ages between 250 and 230 Ma, providing evidence for tephra fallout in the southern part of the Central European Basin related to Olenekian, Anisian–Ladinian and Carnian volcanic activity. The tephra was probably transported by monsoonal circulations from volcanic centres of the NW Tethys to the Central European Basin. The four youngest zircon crystals gave a weighted average 206^{206}Pb/238^{238}U age of 231.1 ± 1.6 Ma (10 analyses), which is interpreted to date syn-depositional tephra fallout into the fluvial Lower Schilfsandstein Member of the Stuttgart Formation. This new maximum depositional age provides the first evidence that deposition of the Stuttgart Formation, which represents the type-example of the mid-Carnian episode, a global episode of enhanced flux of siliciclastic detritus and related environmental perturbations, occurred during the Tuvalian 2 substage at ca. 231 Ma, about 3 million years later than suggested by previous correlations. Zircon grains with weighted average 206^{206}Pb/238^{238}U ages of 236.0 ± 1.2 Ma (n = 17) and 238.6 ± 1.5 Ma (n = 6) and 206^{206}Pb/238^{238}U ages between 241 ± 6 and 250 ± 3 Ma point to the presence of tephra in early Carnian to Olenekian strata of the Keuper to Buntsandstein Groups. Traces of these reworked tephra were incorporated into the Stuttgart Formation due to fluvial erosion in the southern Central European Basin and at its margins

    Germanium and precious metals (Ag–Au–Pt–Pd) at low temperature: the hematite–carbonate–selenide vein system of Tilkerode, Harz Mountains, Germany

    Get PDF
    At the historical Eskeborner Berg underground workings at Tilkerode (Eastern Harz Mountains, Germany), Fe was mined from a carbonate–hematite vein system that was locally enriched in selenide minerals. Clausthalite [PbSe] was the most abundant selenide mineral in a carbonate matrix with laths of specular hematite. To date, the selenide-bearing carbonate–hematite vein system at Tilkerode has not been geochemically investigated. Here, we present the first whole-rock chemical data for a wide suite of trace elements. The following metals are enriched relative to bulk continental crust (orders of magnitude in parentheses): Se (>105), Hg (>104), Ag and Pb (103), Au, Bi, Pt, Ge, Te, Pd and Cd (102). Samples from Tilkerode have up to 2640 ppm Ag, 338 ppm Ge, 1560 ppb Au, 970 ppb Pt and 365 ppb Pd, with Pt/Pd > 1, and a significant positive correlation of Ge vs. (Pd+Pt). The selenide mineralisation took place below 112 °C, the maximum temperature stability of umangite [Cu3Se2]. Our data indicate there is potential for prospecting Ge and precious metals in low-temperature vein systems

    The Malolotsha Klippe: Large‐Scale Subhorizontal Tectonics Along the Southern Margin of the Archean Barberton Greenstone Belt, Eswatini

    Get PDF
    Whether Archean tectonics were horizontally or vertically dominated is controversially discussed because arguments bear on the kinematics and thermal state of the Archean mantle and constrain the mode of formation of the earliest continental crust. Highly deformed strata of Archean greenstone belts figure prominently in this debate because they record long periods of time and multiple deformation phases. Among the best-preserved greenstone belts counts the Barberton Greenstone Belt (BGB) of southern Africa. Geological mapping of part of the southern BGB in Eswatini (Swaziland), combined with U-Pb zircon dating, shows that the region preserves a tightly re-folded imbricate thrust stack in which metavolcanic and -volcaniclastic strata of the Onverwacht Group, deposited at 3.34–3.29 Ga, have been thrust on top of ca. 3.22 Ga siliciclastic strata of the Moodies Group. The structurally highest element, the Malolotsha Syncline, forms a tectonic klippe of substantial size and is >1,450 m thick. Forward modeling of a balanced cross section indicates that this thrust stack was part of a northwestward-verging orogen along the southern margin of the BGB and records a minimum horizontal displacement of 33 km perpendicular to its present-day faulted, ductily strained and multiply metamorphosed margin. Because conglomerate clasts indicate a significantly higher degree of prolate strain which extends further into the BGB than at its northern margin, late-stage tectonic architecture of the BGB may be highly asymmetrical. Our study documents that the BGB, and perhaps other Archean greenstone belts, preserves a complex array of both vertically- and horizontally-dominated deformation styles that have interfered with each other at small regional and short temporal scales

    Vein-type gold formation during late extensional collapse of the Eastern Desert, Egypt: the Gidami deposit

    Get PDF
    Orogenic gold deposits, though construed to focused fluid flow during orogenesis, commonly post-date the main accretionary events. Several lines of evidence indicate that orogenic gold formation in the Arabian–Nubian Shield continued through the orogen collapse stage and associated rapid exhumation and thermal re-equilibration. The Gidami gold deposit in the Eastern Desert of Egypt is associated with post-foliation, brittle-ductile shear zones that deformed a weakly foliated tonalite-trondhjemite massif dated as ~ 704 Ma (U–Pb zircon age). Gold-sulfide quartz veins exhibit textural features indicative of repeated mylonitization, recrystallization, and muscovite crystallization. New 40^{40}Ar/39^{39}Ar ages of muscovite flakes from the auriferous quartz veins and from the altered wallrock overlap within analytical uncertainty at ~ 583 Ma, which corresponds to the climax of extension-related wrenching and rapid exhumation in the region (~ 596 to 582 Ma). Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) data coupled with microtextural characteristics suggest that early formed pyrite generations experienced substantial fluid-mediated recrystallization, and that a set of metals was remobilized by later fluids. A late generation of fibrous pyrite, ubiquitous in microfractures, deposited while the veins re-opened and deformed. The occurrence of free gold particles along with a late-paragenetic assemblage of galena-sphalerite-chalcopyrite(± hessite ± cervelleite) was related to influx of low salinity, metalliferous H2_{2}O-NaCl-CO2_{2}-CH4_{4} fluids as indicated by the fluid inclusion laser Raman spectroscopy and microthermometry results. Au-mobilization and redeposition at T ≀ 350 °C and P ~ 1 to 1.7 kbar, triggered by intermittent fluid pluses and thermal re-equilibration, were most likely stimulated by extensional structures and within-plate magmatism. Coincident province- and deposit-scale pressure–temperature-time data highlight the pivotal role of the orogenic collapse tectonics in gold endowment in the Central Eastern Desert’s crust

    The Murchison Greenstone Belt, South Africa: Accreted slivers with contrasting metamorphic conditions

    Get PDF
    International audienceThis paper presents new petrological and geochronological data for the ∌3.09-2.92 Ga Murchison Greenstone Belt (MGB), located in South Africa's Kaapvaal Craton, and discusses their geotectonic implications. The MGB is made of three tectono-metamorphic units: the Silwana Amphibolites, the Murchison Unit and the La France Formation. They underwent contrasting clockwise pressure-temperature-deformation (P-T-D) histories, and are separated from each other by relatively narrow, high-strain shear zones, with a sinistral, transpressive top-to-the-south movement, consistent with the deformation patterns observed throughout the belt. These patterns are explained by a N-S compressional stress field, affecting the Murchison Belt between 2.97 and 2.92 Ga. Results of new petrological investigations indicate that ultramafic to felsic volcano-sedimentary rocks of the Murchison Unit underwent a greenschist- to lower-amphibolite-facies metamorphism at maximum P-T conditions of 5.6 ± 0.6 kbar at 570 °C, along a relatively hot, minimum apparent geotherm of ∌30 °C/km. In contrast, the Silwana Amphibolites and the La France Formation were metamorphosed at much higher peak metamorphic conditions of 8.7-10 kbar, 630-670 °C, and 8-9 kbar, 600-650 °C, respectively, and require a colder apparent geotherm of ∌20 °C/km. A retrograde, nearly isothermal-decompression P-T path followed by isobaric cooling is also inferred for the La France Formation. The timing of the structural-metamorphic overprint is bracketed between 2.97 and 2.90 Ga, which is constrained by U-Pb zircon ages of a syn-deformation granite within the Murchison Unit and the post-deformation Maranda granite, respectively. Monazite and xenotime from La France metapelites yield much younger ages of ca. 2.75 Ga, with few inherited components at 2.92 Ga. They point to a later activation of the MGB, perhaps related with tectono-thermal events in the Rooiwater Complex and the Pietersburg Greenstone Belt. The relatively cold apparent geotherms recorded in the Silwana and La France rocks, the contrasted peak P-T conditions between the different units, and the near isothermal decompression of the La France Formation indicate that the Kaapvaal craton crust must have been cold enough to enable significant crustal thickening and strain localisation along narrow shear zones and, as a consequence, fast tectonic juxtaposition of rocks metamorphosed at different crustal depths. These features are similar to those observed along Palaeozoic or modern day, oblique subduction-collision zones, but different to those of hot Archaean provinces. We therefore interpret the MGB as representing part of an oblique collision-zone between two terrains of the Kaapvaal craton: the Witwatersrand and Pietersburg terrains

    Molybdenum-isotope signals and cerium anomalies in Palaeoproterozoic manganese ore survive high-grade metamorphism

    Get PDF
    Abstract Molybdenum (Mo) and its isotopes have been used to retrieve palaeoenvironmental information on the ocean–atmosphere system through geological time. Their application has so far been restricted to rocks least affected by severe metamorphism and deformation, which may erase or alter palaeoenvironmental signals. Environmental Mo-isotope signatures can be retrieved if the more manganese (Mn)-enriched rocks are isotopically depleted and the maximum range of ή98Mo values is close to the ~2.7‰ Mo-isotope fractionation known from Mo sorption onto Mn oxides at low temperature. Here, we show that the Morro da Mina Mn-ore deposit in Minas Gerais, Brazil, contains Mn-silicate–carbonate ore and associated graphitic schist that likely preserve ή98Mo of Palaeoproterozoic seawater, despite a metamorphic overprint of at least 600 °C. The extent of Mo-isotope fractionation between the Mn-silicate–carbonate ore and the graphitic schist is similar to modern Mn-oxide precipitates and seawater. Differences in ή98Mo signals are broadly reflected in cerium (Ce) anomalies, which suggest an oxic–anoxic-stratified Palaeoproterozoic ocean

    Neoproterozoic magmatic evolution of the southern OuaddaĂŻ Massif (Chad)

    Get PDF
    This paper presents new petrological, geochemical, isotopic (Nd) and geochronological data on magmatic rocks from the poorly known southern OuaddaĂŻ massif, located at the southern edge of the so-called Saharan metacraton. This area is made of greenschist to amphibolite facies metasediments intruded by large pre- to syn-tectonic batholiths of leucogranites and an association of monzonite, granodiorite and biotite granite forming a late tectonic high-K calc-alkaline suite. U-Pb zircon dating yields ages of 635 ± 3 Ma and 613 ± 8 Ma on a peraluminous biotite-leucogranite (containing numerous inherited Archean and Paleoproterozoic zircon cores) and a muscovite-leucogranite, respectively. Geochemical fingerprints are very similar to some evolved Himalayan leucogranites suggesting their parental magmas were formed after muscovite and biotite dehydration melting of metasedimentary rocks. A biotite-granite sample belonging to the late tectonic high-K to shoshonitic suite contains zircon rims that yield an age of 540 ± 5 Ma with concordant inherited cores crystallized around 1050 Ma. Given the high-Mg# (59) andesitic composition of the intermediate pyroxene-monzonite, the very similar trace-element signature between the different rock types and the unradiogenic isotopic signature for Nd, the late-kinematic high-K to shoshonitic rocks formed after melting of the enriched mantle and further differentiation in the crust. These data indicate that the southern OuaddaĂŻ was part of the Pan-African belt. It is proposed that it represents a continental back-arc basin characterized by a high-geothermal gradient during Early Ediacaran leading to anatexis of middle to lower crustal levels. After tectonic inversion during the main Pan-African phase, late kinematic high-K to shoshonitic plutons emplaced during the final post-collisional stage
    • 

    corecore