22 research outputs found

    Adiciones y correcciones a la orquidoflora valenciana, V

    Get PDF
    Se aportan datos sobre algunos táxones raros en la Comunidad Valenciana; a destacar la presencia de Orchis papilionacea subsp. grandiflora en Villena y Orchis collina en Santa Pola y Orihuela. También aportamos el comportamiento heterotrófico de Cephalanthera longifolia como novedad para España

    VRK1 (Y213H) homozygous mutant impairs Cajal bodies in a hereditary case of distal motor neuropathy.

    Get PDF
    Background: Distal motor neuropathies with a genetic origin have a heterogeneous clinical presentation with overlapping features affecting distal nerves and including spinal muscular atrophies and amyotrophic lateral sclerosis. This indicates that their genetic background is heterogeneous. Patient and methods: In this work, we have identified and characterized the genetic and molecular base of a patient with a distal sensorimotor neuropathy of unknown origin. For this study, we performed whole-exome sequencing, molecular modelling, cloning and expression of mutant gene, and biochemical and cell biology analysis of the mutant protein. Results: A novel homozygous recessive mutation in the human VRK1 gene, coding for a chromatin kinase, causing a substitution (c.637T > C; p.Tyr213His) in exon 8, was detected in a patient presenting since childhood a progressive distal sensorimotor neuropathy and spinal muscular atrophy syndrome, with normal intellectual development. Molecular modelling predicted this mutant VRK1 has altered the kinase activation loop by disrupting its interaction with the C-terminal regulatory region. The p.Y213H mutant protein has a reduced kinase activity with different substrates, including histones H3 and H2AX, proteins involved in DNA damage responses, such as p53 and 53BP1, and coilin, the scaffold for Cajal bodies. The mutant VRK1(Y213H) protein is unable to rescue the formation of Cajal bodies assembled on coilin, in the absence of wild-type VRK1. Conclusion: The VRK1(Y213H) mutant protein alters the activation loop, impairs the kinase activity of VRK1 causing a functional insufficiency that impairs the formation of Cajal bodies assembled on coilin, a protein that regulates SMN1 and Cajal body formation.post-print2120 K

    CDK4 Phosphorylates AMPKα2 to Inhibit Its Activity and Repress Fatty Acid Oxidation

    Get PDF
    The roles of CDK4 in the cell cycle have been extensively studied, but less is known about the mechanisms underlying the metabolic regulation by CDK4. Here, we report that CDK4 promotes anaerobic glycolysis and represses fatty acid oxidation in mouse embryonic fibroblasts (MEFs) by targeting the AMP-activated protein kinase (AMPK). We also show that fatty acid oxidation (FAO) is specifically induced by AMPK complexes containing the α2 subunit. Moreover, we report that CDK4 represses FAO through direct phosphorylation and inhibition of AMPKα2. The expression of non-phosphorylatable AMPKα2 mutants, or the use of a CDK4 inhibitor, increased FAO rates in MEFs and myotubes. In addition, Cdk4(-/-) mice have increased oxidative metabolism and exercise capacity. Inhibition of CDK4 mimicked these alterations in normal mice, but not when skeletal muscle was AMPK deficient. This novel mechanism explains how CDK4 promotes anabolism by blocking catabolic processes (FAO) that are activated by AMPK

    On Learning similarity relations in fuzzy case-based reasoning

    No full text
    Case-based reasoning (CBR) is a problem solving technique that puts at work the general principle that similar problems have similar solutions. In particular, it has been proved effective for classification problems. Fuzzy set-based approaches to CBR rely on the existence of a fuzzy similarity functions on the problem description and problem solution domains. In this paper, we study the problem of learning a global similarity measure in the problem description domain as a weighted average of the attribute - based similarities and, therefore, the learning problem consists in finding the weighting vector that minimizes mis - classification. The approach is validated by comparing results with an application of case-based reasoning in a medical domain that uses a different model. © Springer-Verlag 2004.The authors are partially supported by the EU project IBROW (IST-1999-2005) and the CICYT projects STREAMOBILE (TIC2001-0633-C03-02) and e-INSTITUTOR (TIC2000-1414).Peer Reviewe

    Preservation of critical quality attributes of mesenchymal stromal cells in 3D bioprinted structures by using natural hydrogel scaffolds

    No full text
    Altres ajuts: acords transformatius de la UABThe authors would like to acknowledge Clara Frago (BST) for their assistance with the assessment of the trilineage differentiation potential of MSC, BM; MicroFabSpace and Microscopy Characterization Facility, Unit 7 of ICTS "NANBIOSIS" from CIBER-BBN at IBEC; and Dr. Màrius Aguirre (VHIR) for facilitating this collaborative work. This work has been developed in the context of AdvanceCat and Base 3D with the support of ACCIÓ (Catalonia Trade & Investment; Generalitat de Catalunya) under the Catalonian ERDF operational program (European Regional Development Fund) 2014−2020. Research in JV's laboratory is developed in the context of Red Española de Terapias Avanzadas (TERAV, expedient no. RD21/0017/0022) funded by Instituto de Salud Carlos III (ISCIII) in the context of NextGenerationEU's Recovery, Transformation and Resilience Plan. This work was supported by Networking Biomedical Research Center (CIBER), Spain. CIBER is an initiative funded by the VI National R&D&i Plan 2008−2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions, and the Instituto de Salud Carlos III (RD16/0006/0012), with the support of the European Regional Development Fund; CERCA Program and by the Commission for Universities and Research of the Department of Innovation, Universities, and Enterprise of the Generalitat de Catalunya (2017 SGR 719 and 2017 SGR 1079).Three dimensional (3D) bioprinting is an emerging technology that enables complex spatial modeling of cell-based tissue engineering products, whose therapeutic potential in regenerative medicine is enormous. However, its success largely depends on the definition of a bioprintable zone, which is specific for each combination of cell-loaded hydrogels (or bioinks) and scaffolds, matching the mechanical and biological characteristics of the target tissue to be repaired. Therefore proper adjustment of the bioink formulation requires a compromise between: (i) the maintenance of cellular critical quality attributes (CQA) within a defined range of specifications to cell component, and (ii) the mechanical characteristics of the printed tissue to biofabricate. Herein, we investigated the advantages of using natural hydrogel-based bioinks to preserve the most relevant CQA in bone tissue regeneration applications, particularly focusing on cell viability and osteogenic potential of multipotent mesenchymal stromal cells (MSCs) displaying tripotency in vitro, and a phenotypic profile of 99.9% CD105/CD45, 10.3% HLA-DR, 100.0% CD90, and 99.2% CD73/CD31 expression. Remarkably, hyaluronic acid, fibrin, and gelatin allowed for optimal recovery of viable cells, while preserving MSC's proliferation capacity and osteogenic potency in vitro. This was achieved by providing a 3D structure with a compression module below 8.8 ± 0.5 kPa, given that higher values resulted in cell loss by mechanical stress. Beyond the biocompatibility of naturally occurring polymers, our results highlight the enhanced protection on CQA exerted by bioinks of natural origin (preferably HA, gelatin, and fibrin) on MSC, bone marrow during the 3D bioprinting process, reducing shear stress and offering structural support for proliferation and osteogenic differentiation

    Complex patterns of copy number variation at sites of segmental duplications: an important category of structural variation in the human genome

    No full text
    The structural diversity of the human genome is much higher than previously assumed although its full extent remains unknown. To investigate the association between segmental duplications that display constitutive copy number differences (CNDs) between humans and the great apes and those which exhibit polymorphic copy number variations (CNVs) between humans, we analysed a BAC array enriched with segmental duplications displaying such CNDs. This study documents for the first time that in addition to human-specific gains common to all humans, these duplication clusters (DCs) also exhibit polymorphic CNVs > 40 kb. Segmental duplication is known to have been a frequent event during human genome evolution. Importantly, among the CNV-associated genes identified here, those involved in transcriptional regulation were found to be significantly overrepresented. Complex patterns of variation were evident at sites of DCs, manifesting as inter-individual differentially sized copy number alterations at the same genomic loci. Thus, CNVs associated with segmental duplications do not simply represent insertion/deletion polymorphisms, but rather constitute a wide variety of rearrangements involving differential amplification and partial gains and losses with high inter-individual variability. Although the number of CNVs was not found to differ between Africans and Caucasians/Asians, the average number of variant patterns per locus was significantly lower in Africans. Thus, complex variation patterns characterizing segmental duplications result from relatively recent genomic rearrangements. The high number of these rearrangements, some of which are potentially recurrent, together with differences in population size and expansion dynamics, may account for the greater diversity of CNV in Caucasians/Asians as compared with Africans

    Identification of large-scale human-specific copy number differences by inter-species array comparative genomic hybridization

    No full text
    Copy number differences (CNDs), and the concomitant differences in gene number, have contributed significantly to the genomic divergence between humans and other primates. To assess its relative importance, the genomes of human, common chimpanzee, bonobo, gorilla, orangutan and macaque were compared by comparative genomic hybridization using a high-resolution human BAC array (aCGH). In an attempt to avoid potential interference from frequent intra-species polymorphism, pooled DNA samples were used from each species. A total of 322 sites of large-scale inter-species CND were identified. Most CNDs were lineage-specific but frequencies differed considerably between the lineages; the highest CND frequency among hominoids was observed in gorilla. The conserved nature of the orangutan genome has already been noted by karyotypic studies and our findings suggest that this degree of conservation may extend to the sub-microscopic level. Of the 322 CND sites identified, 14 human lineage-specific gains were observed. Most of these human-specific copy number gains span regions previously identified as segmental duplications (SDs) and our study demonstrates that SDs are major sites of CND between the genomes of humans and other primates. Four of the human-specific CNDs detected by aCGH map close to the breakpoints of human-specific karyotypic changes [e.g., the human-specific inversion of chromosome 1 and the polymorphic inversion inv(2)(p11.2q13)], suggesting that human-specific duplications may have predisposed to chromosomal rearrangement. The association of human-specific copy number gains with chromosomal breakpoints emphasizes their potential importance in mediating karyotypic evolution as well as in promoting human genomic diversity

    ORIGINAL INVESTIGATION Identification of large-scale human-specific copy number differences by inter-species array comparative genomic hybridization

    No full text
    Abstract Copy number differences (CNDs), and the concomitant differences in gene number, have contributed significantly to the genomic divergence between humans and other primates. To assess its relative importance, the genomes of human, common chimpanzee, bonobo, gorilla, orangutan and macaque were compared by comparative genomic hybridization using a high-resolution human BAC array (aCGH). In an attempt to avoid potential interference from frequent intraspecies polymorphism, pooled DNA samples were used from each species. A total of 322 sites of large-scale interspecies CND were identified. Most CNDs were lineagespecific but frequencies differed considerably between the lineages; the highest CND frequency among hominoids was observed in gorilla. The conserved nature of the orangutan genome has already been noted by karyotypic studies and our findings suggest that this degree of conservation may extend to the sub-microscopic level. Of the 322 CND sites identified, 14 human lineage-specific gains were observed. Most of these human-specific copy number gains span regions previously identified as segmental duplications (SDs) and our study demonstrates that SDs are major sites of CND between the genomes of humans and other primates. Four of the human-specific CNDs detected by aCGH map close to the breakpoints of human-specific karyotypic changes [e.g., the humanspecific inversion of chromosome 1 and the polymorphic inversion inv(2)(p11.2q13)], suggesting that human-specific duplications may have predisposed to chromosomal rearrangement. The association of human-specific copy number gains with chromosomal breakpoints emphasizes their potential importance in mediating karyotypic evolution as well as in promoting human genomic diversity
    corecore