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Highlights 
 

• CDK4 promotes glycolysis and inhibits fatty acid oxidation  

 

• CDK4 inhibits AMPK activity through direct phosphorylation of the AMPK- α2 

subunit. 

 

• CDK4-/- mice have AMPK-dependent increased oxidative metabolism 

 

 

 

eTOC Blurb 
 

Lopez-Mejia et al. show in this study that CDK4, a protein that is usually involved in the 

control of cell division, is an important regulator of the energy balance of the cell 

through the direct inhibition of the activity of AMPK, which is a major regulator of 

energy consuming processes.  
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Abstract 

 

 The roles of CDK4 in the cell cycle have been extensively studied, however 

less is known about the mechanisms underlying the metabolic regulation by CDK4. 

Here, we report that CDK4 promotes anaerobic glycolysis and represses fatty acid 

oxidation in mouse embryonic fibroblasts (MEFs) by targeting the AMP-activated 

protein kinase (AMPK). We also show that fatty acid oxidation (FAO) is specifically 

induced by AMPK complexes containing the α2 subunit. Moreover, we report that 

CDK4 represses FAO through direct phosphorylation and inhibition of AMPKα2. 

The expression of non-phosphorylatable AMPKα2 mutants, or the use of a CDK4 

inhibitor, both increased FAO rates in MEFs and myotubes. In addition, Cdk4-/- 

mice have increased oxidative metabolism and exercise capacity. Inhibition of 

CDK4 mimicked these alterations in normal mice, but not when skeletal muscle 

was AMPK-deficient. This novel mechanism explains how CDK4 promotes 

anabolism by blocking catabolic processes (FAO) that are activated by AMPK.  
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Introduction 

 

  Promitotic signals such as growth factors increase the levels of D-type 

cyclins (cyclin D1, D2 and D3), which bind and activate CDK4/6 to trigger the 

phosphorylation of the retinoblastoma-associated protein pRB and other pocket 

proteins, i.e. p107 and p130 (Malumbres and Barbacid, 2005). Rb phosphorylation 

enables release of the E2F transcription factors that promote the transcription of 

genes necessary for the replication of the genome (Malumbres and Barbacid, 

2005). The role of CDK4 in the regulation of cell cycle progression has been 

extensively studied in eumetazoan organisms, and alterations in CDK4 activity 

have been associated with cancer development and progression (Malumbres and 

Barbacid, 2001, 2009; O'Leary et al., 2016). For example, the R24C mutation, which 

is used in this study, renders CDK4 resistant to inhibition by INK4 inhibitors and 

has been reported to confer a genetic predisposition to melanoma (Rane et al., 

2002; Rane et al., 1999; Wolfel et al., 1995).  

 Cell division requires substantial amounts of ATP, and numerous metabolic 

intermediates to support biosynthesis of essential molecules, such as lipids and 

nucleic acids. Proliferating cells preferentially use anaerobic glycolysis to generate 

large amounts of ATP, and to provide metabolic intermediates to support cell 

growth (Jones and Thompson, 2009). Growing evidence demonstrates that 

regulatory crosstalk exists between metabolic pathways and regulators of cell cycle 

progression. Mitochondrial respiration and metabolism are coordinated with cell 

cycle progression by cell cycle regulators (Lopez-Mejia and Fajas, 2015; Salazar-

Roa and Malumbres, 2016)). Our laboratory and others have demonstrated that 

CDK4 is one such “metabolic” cell cycle regulator (Blanchet et al., 2011; Icreverzi et 

al., 2012; Lagarrigue et al., 2016; Lee et al., 2014). Indeed, we have previously 

shown that CDK4 regulates oxidative metabolism via the E2F1 transcription factor, 

in muscle and brown adipose tissue (Blanchet et al., 2011) and promotes the 

insulin-signaling pathway in mature adipocytes (Lagarrigue et al., 2016). Overall, 

the participation of cell cycle regulators in the control of energy homeostasis 

occurs mainly through the activation of anabolic processes (Aguilar and Fajas, 

2010). The AMP-activated protein kinase (AMPK) is a central inhibitor of such 

anabolic processes and might therefore be repressed by cell-cycle regulators. 
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Under conditions of low cellular energy, AMP and ADP are increased relative to 

ATP, and this is sensed by AMPK. AMPK exists as heterotrimeric complexes 

composed of a catalytic subunit, α, and two regulatory subunits, β and γ; the α and 

β subunits exist as two isoforms (α1/α2 and β1/β2, encoded by the PRKAA1/2 and 

PRKAB1/2 genes), and the γ subunit as three isoforms (γ1/γ2/γ3, encoded by 

PRKAG1/2/3), thus generating up to 12 combinations of heterotrimeric complex 

(Carling, 2004; Grahame Hardie, 2016; Hardie et al., 2012; Ross et al., 2016b). 

AMPK is regulated both by phosphorylation/dephosphorylation and by the 

relative cellular concentrations of adenine nucleotides, with the two mechanisms 

being intimately linked. Firstly, the upstream kinases LKB1 (liver kinase B1) 

(Hawley et al., 2003; Shaw et al., 2004; Woods et al., 2003) or CaMKK2 

(calmodulin-dependent kinase kinase-2/-β) (Hawley et al., 2005; Hurley et al., 

2005; Woods et al., 2005) activate AMPK through the phosphorylation of Thr172 of 

the α subunit (Hawley et al., 1996). Secondly, AMPK is regulated through the 

competitive binding of ATP, or AMP and ADP at up to three sites on the γ subunit. 

When cellular energy levels are low, binding of AMP or ADP enhances Thr172 

phosphorylation by LKB1 and inhibits Thr172 dephosphorylation by protein 

phosphatases, while binding of AMP (but not ADP) causes further allosteric 

activation (Ross et al., 2016a). Metabolic stresses that reduce intracellular ATP 

concentrations are therefore the best-characterized activators of AMPK, although 

it has recently been shown that glucose deprivation can activate AMPK by an 

adenine nucleotide-independent mechanism (Zhang et al., 2017). Once activated, 

AMPK promotes catabolic pathways that generate ATP (e.g. fatty acid oxidation, 

FAO) while switching off anabolic pathways and other ATP-requiring processes to 

restore cellular ATP levels (Carling, 2004; Grahame Hardie, 2016; Hardie et al., 

2012; Ross et al., 2016b).  

 Other kinase activities that are induced by growth stimuli are known to 

inhibit AMPK. This includes AKT a key effector of the insulin/IGF1-signaling 

pathway that antagonizes the AMPK pathway through phosphorylation of AMPKα1 

on Ser487 (Horman et al., 2006b), or ERK, that was shown to phosphorylate the 

same residue (Lopez-Cotarelo et al., 2015). The cyclic AMP-dependent protein 

kinase (PKA) also phosphorylates and negatively regulates AMPK (Djouder et al., 

2010; Hurley et al., 2006), and Thr481 and Ser477 on AMPKα1 are phosphorylated 
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by glycogen synthase kinase 3 (GSK3)(Suzuki et al., 2013), following a “priming” 

phosphorylation of Ser487 by AKT.  

 

Muscle function requires a finely tuned balance between anabolism and 

catabolism in order to respond to physiological challenges within the available 

energy supply. AMPK is a major coordinator of energy intake and utilization in 

exercising muscle (Hoffman et al., 2015), functioning to enhance energy 

availability. Amongst other effects, AMPK promotes FAO to maintain ATP cellular 

stores, although the exact role of AMPK in regulation of muscle FAO has been 

controversial (Mounier et al., 2015).  

  

 In this study, we sought to determine whether CDK4 participates in energy 

homeostasis by inhibiting catabolic processes. The mechanisms by which the 

activity of AMPK is inhibited under anabolic conditions, such as during cell cycle 

progression or in resting muscle, have not been thoroughly studied.  We report 

here that CDK4 enhances anaerobic glycolysis and represses fatty acid oxidation. 

Surprisingly, the AMPKα1 and α2 subunits play distinct roles. We provide here a 

molecular mechanism whereby CDK4-CycD3 complexes directly repress α2-

containing complexes to inhibit FAO. We show that chemical and genetic inhibition 

of CDK4 also promotes oxidative metabolism in vivo, as evidenced by decreased 

respiratory exchange ratio (RER) and increased exercise performance in mice 

lacking CDK4 activity.  
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Results 

CDK4 modulates FAO in an E2F1-independent manner  

 We previously demonstrated that CDK4 is a major mediator of insulin 

signaling, and therefore contributes to the positive regulation of biosynthetic 

processes, such as fatty acid synthesis, and the inhibition of catabolic pathways, 

such as lipolysis (Lagarrigue et al., 2016). To further investigate the contribution of 

CDK4 to metabolic regulation, Seahorse analyses were performed. Cdk4R24C/R24C 

mouse embryonic fibroblasts (MEFs), which express a hyperactive CDK4 mutant, 

exhibited a significant increase in anaerobic glycolysis, as measured by the 

extracellular acidification rate (ECAR), whereas Cdk4-/- MEFs had impaired 

anaerobic glycolysis (Figures 1a-b). In contrast, CDK4 activity was inversely 

correlated with FAO. Cdk4R24C/R24C MEFs metabolized palmitate at a low rate, 

whereas Cdk4-/- MEFs showed increased palmitate oxidation (Figures 1c-d). 

Interestingly, the effects of CDK4 on substrate use were independent of E2F1 

activity, since deletion of E2F1 in Cdk4R24C/R24C MEFs failed to reverse the effects of 

Cdk4R24C on anaerobic glycolysis or palmitate oxidation (Figures 1e-h). These 

results suggest that CDK4 controls substrate utilization in MEFs independently of 

E2F1.  

 

CDK4 regulation of FAO is AMPK-dependent 

 The decrease in FAO observed in response to constitutive activation of 

CDK4 is opposite to the effect seen with AMPK activation (Fullerton et al., 2013; 

Hardie, 2015; Hardie and Pan, 2002; O'Neill et al., 2014). Therefore, we analyzed 

the involvement of AMPK in the CDK4-mediated regulation of FAO in MEFs. Basal 

levels of phosphorylated ACC (pACC), which is a known target and marker of 

AMPK activity, were decreased in Cdk4R24C/R24C MEFs but increased 3-fold in the 

Cdk4-/- cells (Figures 2a-b and S1a-b), suggesting that CDK4 antagonizes AMPK 

function. Moreover, the activation of AMPK by the specific activator A769662 

(Goransson et al., 2007; Moreno et al., 2008) was reduced in Cdk4R24C/R24C MEFs 

(Figures 2a-b), suggesting that CDK4 can prevent AMPK activation. In addition, 

increased AMP/ATP and ADP/ATP ratios were observed in MEFs expressing the 

hyperactive CDK4 mutant, which suggested a lower catabolic rate (Figures 2c-d). 

Interestingly, in Cdk4-/- MEFs, comparable pACC levels were measured both in the 
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basal state and upon AMPK stimulation (Figures 2a-b). This finding implies that in 

the absence of CDK4, AMPK reaches its activated state without need for any 

further stimulation. Likewise in Cdk4-/- cells, and in WT MEFs treated with 

A769662, we observed a significant decrease of AMP/ATP and ADP/ATP ratios 

(Figures 2 c-f). 

Next, we studied the physiological relevance of the increase in AMPK 

activity in Cdk4-/- cells, using FAO assays in MEFs treated with A769662 and with 

the non-selective AMPK inhibitor Compound C. As expected, the levels of palmitate 

oxidation in WT MEFs were at least 25% higher in A769662-treated cells (Figures 

2g and S1c-d). However, Cdk4-/- cells did not respond in the same assay to A769662 

treatment. By contrast, AMPK activation by A769662 in Cdk4R24C/R24C MEFs was 

only able to restore WT levels of FAO (Figures 2g and S1c-d). AMPK inhibition in 

Cdk4-/- cells (albeit by the non-selective inhibitor compound C) produced 

consistent results. The levels of pACC in CDK4 null MEFs, as well as the increased 

FAO levels were restored back to basal levels (Figures S1e-g). Taken together, 

these results suggest that CDK4 inhibits the AMPK pathway. 

 

The AMPKα2 subunit is required for efficient FAO in MEFs 

 Our results suggested that CDK4 has a negative effect on FAO via the 

regulation of AMPK activity, raising the question of which AMPK subunits 

contribute to this effect. Interestingly, the deletion of either AMPKα subunit in 

MEFs resulted in increased ECAR, indicating increased glycolysis, whereas the 

complete abrogation of AMPK activity had no effect, perhaps due to disruption of 

glucose transport into the cells (Figures 3a-b). However, although AMPKα1KO 

MEFs metabolized palmitate as efficiently as control cells, both AMPKα2KO and 

AMPK α1/ α2KO (DKO) cells exhibited significantly reduced levels of FAO (Figures 

3c-d). Consistently, A769662 failed to trigger FAO in cells lacking the α2 subunit 

(both α2KO and DKO). Thus, despite being more abundant in MEFs (Morizane et 

al., 2011), the AMPKα1 subunit cannot substitute for the α2 subunit in the control 

of FAO, even when allosterically activated by A769662 (Figures 3e-f and S1h-i). In 

addition, ACC phosphorylation could be detected upon stimulation with A769662 

in both AMPK α1KO and AMPK α2KO MEFs (Figure S1j), suggesting that both 

AMPK subunits can phosphorylate ACC1 and therefore inhibit lipid synthesis, but 
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only AMPKα2 can promote FAO. Taken together, these results suggest that AMPK 

complexes containing α2 specifically control FAO. 

 

CDK4 phosphorylates the AMPK α2 subunit  

 The inhibition of AMPKα2-dependent FAO could be the result of a direct 

phosphorylation by CDK4. In vitro kinase assays showed that recombinant 

CDK4/CycD3 phosphorylated all GST fusions of AMPK subunits tested at different 

levels (Figure 4a, loading control in S2a). Interestingly, AMPKα2 and AMPKγ2 

were phosphorylated by CDK4 to a greater extent than pRB, which is the canonical 

CDK4 substrate (Figure 4b). Since the specificity of CDKs is partially determined by 

substrate docking on the cyclin subunit, kinase assays were also performed using 

recombinant CDK4/CycD1 instead of CDK4/CycD3. The phosphorylation of the 

AMPK subunits was very low under these conditions (Figure S2b), suggesting that 

AMPK phosphorylation by CDK4 requires recognition by cyclin D3. 

 AMPKα2 was predicted to contain 6 CDK4 phosphorylation sites (Thr85, 

Ser176, Ser345, Ser377, Thr485, Ser529). Out of these six potential sites, five were listed 

in the phosphoNET database (Figure 4c). Site-directed mutagenesis (S>A or T>A) 

combined with protein truncation studies (Figure S3c) identified Ser345, Ser377, 

Thr485 and Ser529 as CDK4 phosphorylation sites (Figures 4d-e, loading control in 

S3d). Phosphorylation by CDK4 was completely abrogated in a full-length 

recombinant protein carrying Ser to Ala or Thr to Ala mutations at the four CDK4 

phosphosites (α2 S>A mutant), suggesting that the four newly-identified residues 

account for all sites phosphorylated on GST-AMPKα2 by CDK4 in cell-free assays 

(Figure 4f-g, loading control in S2e). The phosphorylation of Ser377 and Thr485 have 

been previously described in proteomic studies (Figure S2f) (Dinkel et al., 2011; 

Gnad et al., 2011; Hornbeck et al., 2015)), including cell cycle-related 

phosphoproteomes (Daub et al., 2008; Kettenbach et al., 2011), and in liver upon 

insulin stimulation (Humphrey et al., 2015), suggesting that the regulation of 

AMPK by CDK4 is important for cell cycle progression and for the insulin signaling 

pathway. Moreover, we found the four newly identified CDK4 phosphosites to be 

conserved among the AMPKα2 subunits of several mammalian species (Figure 

S3a) but not between the AMPKα1 and AMPKα2 isoforms (Figure S3b).  
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In intact cells, AMPK is found as a heterotrimeric complex; therefore 

recombinant kinase-inactive α2β2γ1 complexes were also used as substrate for 

recombinant CDK4/CycD3 complexes. After mass spectrometry analysis we 

obtained 83 % coverage of the AMPKα2 subunit and observed the phosphorylation 

in Ser176 and Ser377 (Figure 4h). A targeted analysis to increase coverage showed 

phosphorylation of Thr485 and Ser529 with low detectability. The phosphorylation 

of Ser345 and Ser377 was also detected in myotubes and muscle tissue, which 

express high levels of the α2 subunit (Figures S4a-b and table S1). Interestingly, 

our results suggest that these phosphorylations are present when AMPK is inactive 

since the activating Thr172 phosphorylation was not found in 5 out of 6 

experiments (Figures S4a-b). Taken together, these data indicate that the α2 

subunit of AMPK is a substrate for CDK4-CycD3 complexes in cell-free assays, and 

that some of these phosphorylations occur in vivo, in conditions in which CDK4 is 

active (Blanchet et al., 2011; Lagarrigue et al., 2016), but AMPK is inactive.  

 

AMPKα2 phosphorylation is necessary and sufficient for FAO repression by 

CDK4 

 To elucidate the functional relevance of the phosphorylation of AMPKα2 by 

CDK4, we compared the regulatory activities of AMPKα2 S>A, AMPKα2 and 

AMPKα1 in the context of FAO. Transfection of AMPK DKO MEFs with the AMPKα2 

S>A mutant conferred ACC phosphorylation levels that where higher than those 

observed in AMPKα1- or α2-transfected cells both in the basal state and upon 

stimulation by A769662 (Figure 5a). Similarly, ectopic expression of the AMPKα2 

S>A mutant in the FAO-defective AMPK DKO MEFs rescued palmitate oxidation to 

a greater extent than that which was observed upon transfection with WT 

AMPKα2 (Figures 5b and S5a). Taken together, these results indicate that defective 

targeting of AMPKα2 by CDK4 at Ser345, Ser377, Thr485 and Ser529 results in 

increased AMPKα2 FAO-promoting activity. 

 In order to demonstrate that CDK4 represses FAO by repressing AMPK 

activity, wild type and AMPK mutant cells were treated with CDK4 inhibitors. 

Inhibition of CDK4 activity by LY2835219 significantly increased FAO, after 24 

hours (Figures 5c and S5b) or 2 hours (Figures S5c-d) of treatment. Strikingly, the 

CDK4 inhibitor failed to increase FAO in both AMPK α2KO or AMPK DKO cells but 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 10

not in AMPK α1KO cells, demonstrating that CDK4 targets AMPKα2 to alter cellular 

metabolism (Figures 5c, S5b and S5e-g). The overall positive effect of CDK4 

inhibition on AMPK activity was confirmed by analyzing ACC phosphorylation. 

Indeed, LY2835219 treatment induced a dose-dependent increase in the 

phosphorylation of ACC (Figures S5h and S5i). This effect correlated with 

decreased CDK4 activity given that phosphorylation of RB Ser780 was also reduced 

(Figures S5i). Of note, increased ACC phosphorylation and increased FAO could be 

detected after 2h of CDK4 inhibition, whereas inhibition of RB phosphorylation 

required longer treatments. Moreover, LY2835219 had a comparable effect as 

A769662, significantly decreasing AMP/ATP and ADP/ATP ratios in WT MEFs 

(Figures 2e-f and 5d-e). The use of LY2835219 suggests that CDK4 inhibition 

promotes catabolic processes in an AMPKα2-subunit dependent manner.  

We next decided to validate our finding in a more physiological cellular 

model. LY2835219 treatment induced an increase in FAO in C2C12 myotubes, 

which are known to express high levels of AMPKα2 (Figures S6a-b). In this model, 

CDK4 inhibition correlated with a dose-dependent increase of the phosphorylation 

of ACC, without significant increase of AMPK Thr172 phosphorylation (Figures S6c-

e). The direct involvement of AMPKα2 was confirmed by analyzing myotubes 

lacking AMPKα2 or both the α1 and α2 subunits (Lantier et al., 2010). Like in MEFs, 

FAO was impaired in the α2KO and DKO myotubes. Similarly, the CDK4 inhibitor 

failed to increase FAO in α2KO and DKO myotubes (Figures 5f and S6f).  Rescue of 

AMPK DKO myotubes with the AMPKα2 S>A mutant triggered ACC 

phosphorylation levels that where higher than those observed in AMPK α2-

transfected cells both in the basal state or upon stimulation with A769662 (Figure 

5g). Similarly, ectopic expression of the AMPKα2 S>A mutant in the FAO-defective 

AMPK DKO myotubes rescued palmitate oxidation to levels similar to those of WT 

myotubes (Figures 5h and S6g). Taken together, these results in muscle cells 

confirm that CDK4 modulates FAO through the specific inhibition of AMPKα2 

activity, and that a non-phosphorylatable AMPKα2 mutant has a FAO-promoting 

activity.  

 

 

CDK4 modulates oxidative metabolism and exercise capacity in vivo  
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We next investigated the contribution of CDK4 to oxidative metabolism and 

muscle function in vivo. Isolated mitochondria from Cdk4-/- muscles showed 

increased oxygen consumption, suggesting increased fatty acid oxidation capacity 

(Figures 6a-b). Increased FAO was further demonstrated by using intact muscle 

fibers from Flexor digitorum brevis (FDB) muscle (Figure 6c). Fibers from Cdk4-/-  

FDB muscle metabolized palmitate at a higher rate (Figure 6c-d) and were capable 

to reach  a higher maximal respiration (Figure 6c and 6e). The increased capacity 

of the muscles of Cdk4-/- mice to oxidize fatty acids suggested an overall metabolic 

phenotype in these mice.  

Cdk4-/- mice have decreased body weight (Figure 6f). Consistent with 

increased AMPK activity, Cdk4-/- mice exhibit increased exercise capacity and 

decreased RER, indicating a preference towards fat oxidation (Figures 6g-i). An 8-

day treatment with LY2835219 did not trigger significant alterations in body 

weight, and food intake (Figures 6j and S7d), although it induced a consistent 

albeit non-significant decrease in fat mass (Figure S7c) and a modest but 

significant increase in exercise performance (Figure 6k). A decrease in RER was 

observed after 4-5 days of treatment (Figure 6l-m). In vivo, the inhibition of CDK4 

triggered an increase in the phosphorylation of ACC in quadriceps muscle (Figures 

S7e and S7g), suggesting increased AMPK activity. This was accompanied by an 

increase of the slow-twitch fiber marker MyHC I (Figure S7i). MyHC I mRNA levels 

were also increased in gastrocnemius and tibialis muscles from LY2835219 

treated animals (Figures S7h-j). Overall, these data suggest that CDK4 is a negative 

regulator of exercise capacity and whole body oxidative metabolism in mice.  

 

CDK4 regulation of oxidative metabolism and exercise capacity in vivo 

requires muscle AMPK 

To determine if the effects of CDK4 inhibition in exercise performance and 

whole body oxidative metabolism require muscle AMPK, we treated muscle-

specific AMPK α1/α2 KO mice (MDKO) (Lantier et al., 2014) with the CDK4 

inhibitor. Consistently, treatment with LY2835219 did not trigger significant 

alterations in body weight, or food intake (Figures 7a and S7m) in control nor in 

AMPK MDKO animals. In control animals, LY2835219 was sufficient to trigger a 
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decrease in fat mass (albeit not significant, p=0.1243), a modest increase in 

exercise performance and a decrease in RER (Figures 7b-d and S7l). In agreement 

with previous reports (Lantier et al., 2014; O'Neill et al., 2011), AMPK MDKO 

animals showed decreased RER and decreased exercise capacity (Figures 7b-d). 

However, they were not affected by the treatment with LY2835219 under our 

experimental conditions (Figures 7a-d and S7k-m). Taken together, these results 

show that the negative effects of CDK4 in oxidative metabolism and exercise 

performance in vivo involve muscle AMPK activity.  

 

Discussion  

 The contribution of CDK4 to the control of cell cycle progression, via pocket 

proteins and E2F transcription factors, has been extensively studied (Malumbres, 

2014) for more than two decades. However, only recently the CDK4/6-pRB/E2F1 

pathway was implicated in metabolic regulation (Aguilar and Fajas, 2010; Blanchet 

et al., 2011; Denechaud et al., 2016; Lagarrigue et al., 2016; Lee et al., 2014; Lopez-

Mejia and Fajas, 2015; Petrov et al., 2016; Salazar-Roa and Malumbres, 2016). Our 

study provides now evidence that the cell cycle kinase CDK4 is a key player in the 

control of cellular energy homeostasis, and can also act independently of E2F1 to 

regulate metabolic pathways.   

 Three major findings are described here. First, we found that CDK4 

negatively regulates the AMPK pathway and, thus, inhibits FAO through 

phosphorylation of the AMPKα2 subunit. Indeed, Cdk4-/- MEFs behaved like cells 

treated with an AMPK activator and exhibited high FAO levels and low levels of 

anaerobic glycolysis. Consistently, Cdk4R24C/R24C cells exhibited increased anaerobic 

glycolysis and very low FAO levels. A similar phenotype was observed in AMPK 

α2KO MEFs. Therefore, CDK4 activity is inversely correlated with AMPKα2-

dependent activity. These findings indicate that CDK4 plays a central role in 

mitochondrial FAO that involves AMPKα2 inhibition and is independent of other 

downstream effectors, such as E2F1. 

 Cell division requires high cellular energy levels. Despite the recent 

evidence that underscore the existence of a crosstalk between cell cycle regulators 

and energy metabolism (Lopez-Mejia and Fajas, 2015; Salazar-Roa and Malumbres, 

2016); the molecular mechanisms coupling energy production and cell cycle 
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progression remain to be elucidated. Based on our results, we propose that, to 

exert its role in both cell cycle progression and the insulin signaling pathway, 

CDK4 represses catabolism by directly targeting at least one of the catalytic 

subunits of AMPK, namely the α2 subunit. Interestingly, AKT, another key player of 

the insulin signaling pathway, phosphorylates the α1 subunit of AMPK, thus 

reducing α1 Thr172 phosphorylation and the subsequent activation of the AMPK 

heterotrimer (Hawley et al., 2014; Horman et al., 2006a). Remarkably, previous 

evidence from our laboratory demonstrates that CDK4 is a key effector of the AKT 

pathway (Lagarrigue et al., 2016). Surprisingly, GSK3 has been reported to inhibit 

AMPK activity, after phosphorylation of the α subunit by AKT(Suzuki et al., 2013). 

This finding is somehow unexpected since GSK3 activity is negatively regulated via 

phosphorylation by AKT, upon insulin stimulation. Moreover, GSK3 is known to 

inhibit rather than promote anabolic pathways, like the synthesis of glycogen 

(Cohen and Frame, 2001). 

 The second major finding in our study is the observation that the function of 

AMPK heterotrimers can differ depending on their α subunit isoform. Rather few 

studies have focused on the specific function of each AMPK subunit (although see a 

recent review (Ross et al., 2016b)), and models completely lacking AMPK activity  

are often used to study the function of AMPK. Liver-specific deletion or 

overexpression of the AMPKα2 subunit suggested that this isoform is involved in 

regulating the balance between lipid synthesis and FAO (Andreelli et al., 2006; 

Foretz et al., 2005), but these studies did not assess the differences in specificity 

between α1 and α2. Interestingly, leptin was shown to directly trigger FAO in 

muscle (Minokoshi et al., 2002), and to trigger an anorexigenic response in 

hypothalamus (Minokoshi et al., 2004), in an AMPKα2-dependent manner. The 

effect on food intake may be triggered through AKT signaling via phosphorylation 

of AMPKα2 by p70S6K (Dagon et al., 2012). Other positive energy balance signals 

can also reduce food intake via AMPKα2 activity in the brain (Claret et al., 2007; 

Kim et al., 2004). The isoform-specific roles of AMPK isoforms in whole body 

energy homeostasis were further highlighted by the fact that the AMPKα2 subunit 

is essential for nicotine-triggered lipolysis in adipocytes (Wu et al., 2015). 

However, the specific regulation of energy homeostasis by AMPKα2, and the 
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molecular mechanisms regulating α2-isoform specific AMPK activity have 

remained largely unknown.  

The third major finding in our study is that the modulation of CDK4 

activity in vivo can result in modifications in whole body energy homeostasis and 

exercise performance. These modifications require the expression of AMPK in 

skeletal muscle. Our results are in agreement with previous studies demonstrating 

that the use of AICAR can increase exercise performance in sedentary mice while 

increasing the proportion of slow twitch fibers (Narkar et al., 2008).  However, the 

exact mechanisms that mediate this phenotype remain to be studied. Global 

approaches to determine muscle reprograming at the proteomics and gene 

expression level will allow further study of the involvement of CDK4 in muscle 

biology, and most particularly in exercise. Given that muscle expresses the 

AMPKα2 subunit highly, and responds to exercise by down-regulating CDK activity 

(Hoffman et al., 2015), we believe that the study of CDK4-AMPKα2 interaction in 

skeletal muscle will be highly relevant to the discovery of pharmacological 

interventions to promote or enhance the beneficial effects of exercise on general 

health.  

By identifying 4 new specific CDK4 phosphosites in the α2 subunit of 

AMPK, we have discovered a specific role for this subunit in the control of fatty 

acid metabolism, which we could not demonstrate for the α1 subunit.  

Interestingly, we detected the phosphorylation of two of these residues, Ser377 and 

Ser 345, in muscle samples from resting mice and in myotubes stimulated with 

insulin or IGF1.  

 FAO repression by CDK4 emerges as an additional level of metabolic 

regulation by this kinase, which also mediates other effects of the insulin signaling 

pathway (Lagarrigue et al., 2016), including lipid synthesis, glycolysis (Denechaud 

et al., 2016) and proliferation (Malumbres and Barbacid, 2005).    

 In conclusion, our results demonstrate that CDK4 is a major regulator of 

cellular energy homeostasis. By combining experimental data from cellular 

metabolism analyses, biochemistry and molecular biology studies and in vivo 

experiments, our work provides insights into the complex regulation of anabolic 

and catabolic pathways. These novel findings can have broad implications, not only 

in the regulation of cell metabolism during proliferation, but also in the control of 
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energy utilization at the level of the whole organism.  Moreover, they highlight the 

need to delve deeper into the specific functions of the different AMPK 

heterotrimers, as well as in the regulation of AMPK inactivation.   
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FIGURE LEGENDS 

 

Figure 1. CDK4 modulates FAO in an E2F1-independent manner  

Cdk4+/+, Cdk4-/- and Cdk4R24C/R24C MEFs were submitted to a glycolysis assay, during 

which ECAR was measured at the basal level and upon glucose injection (a), or to a 

FAO assay, in which the palmitate induced OCR was measured (in % OCR 

compared to the basal OCR) (c). The glycolytic rate was calculated in (b). The area 

under curve of the palmitate induced OCR was quantified in (d).  

E2f1+/+, E2f1-/-, Cdk4R24C/R24C E2f1+/+ and Cdk4R24C/R24C E2f1-/- MEFs were submitted 

to a glycolysis assay, during which ECAR was measured at the basal level and upon 

glucose injection (e), or to a FAO assay, in which the palmitate induced OCR was 

measured (in % OCR compared to the basal OCR) (g). The glycolytic rate was 

calculated in (f). The area under curve of the palmitate induced OCR was 

quantified in (h).  

Data were expressed as mean ± s.e.m.  

 

Figure 2. CDK4 regulation of FAO is AMPK-dependent 

Cdk4+/+, Cdk4-/- and Cdk4R24C/R24C MEFs were starved for 3 hours and then 

stimulated with 50µM A769662, the western blot analysis shows the A769662 

induced ACC phosphorylation in Cdk4+/+, Cdk4-/- and Cdk4R24C/R24C cells (a).  The 

pACC levels were quantified in (b).  SV40 immortalized cells were placed in KHB 

medium containing 1.5mM carnitine and 300µM Oleate for AMP, ADP and ATP 
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quantification by HPLC. The AMP/ATP and ADP/ATP ratios are shown in (c) and 

(d). The AMP/ATP and ADP/ATP ratios of WT SV40 immortalized cells treated 

with 50µM A769662 for 8 hours are shown in (e) and (f). Cdk4+/+, Cdk4-/- and 

Cdk4R24C/R24C MEFs were treated with DMSO or 50µM A769662 for 2 hours in KHB 

medium and submitted to a FAO assay in which the palmitate induced OCR was 

measured (in % OCR compared to the basal OCR). The area under curve of the 

palmitate induced OCR was quantified in (g).  

Data were expressed as mean ± s.e.m. See also Figure S1. 

 

Figure 3.  The AMPKα2 subunit is required for efficient fatty acid oxidation in 

MEFs 

AMPK WT, AMPK A1 KO, AMPK A2 KO and AMPK DKO SV40-immortalized MEFs 

were submitted to a glycolysis assay, during which ECAR was measured at the 

basal level and upon glucose injection (a), or to a FAO assay, in which the palmitate 

induced OCR was measured (in % OCR compared to the basal OCR) (c). The 

glycolytic rate was calculated in (b). The area under curve of the palmitate induced 

OCR was quantified in (d).  

AMPK WT and AMPK A2 KO SV40-immortalized MEFs were treated for 2 hours 

with DMSO or 50µM A769662 for 2 hours in KHB medium and submitted to a FAO 

assay in which the palmitate induced OCR was measured (in % OCR compared to 

the basal OCR) (e). The area under curve of the palmitate induced OCR was 

quantified in (f).  

Data were expressed as mean ± s.e.m. See also Figure S2. 

 

 Figure 4. CDK4 phosphorylates the AMPKα2 subunit  

(a) Cyclin D3-CDK4 directly phosphorylates full-length GST-AMPK subunits in vitro 

(n=3). Asterisks mark the proteins of interest.  The Phosphorylation score (in % of 

RB phosphorylation) was determined in (b). CDK consensus sites in human 

AMPKα2 (PRKAA2) are depicted in (c). (d) In vitro phosphorylation of WT and 

mutated (Ser or Thr to Ala) GST-AMPK α2 fragments (D1: 1-245 aa, D2: 246-356 

aa, D3: 357-422 aa, D4: 432-522 and D2-3: 246-422 aa, 1100-1321aa) by Cyclin 

D3/CDK4 (n=3). The Phosphorylation score (in % of the WT fragment) was 

determined in (e).  (f) In vitro phosphorylation of full-length WT GST-AMPKα2 and 
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full-length S>A GST-AMPKα2 by Cyclin D3/CDK4 (n=3). The Phosphorylation score 

(in % of RB phosphorylation) was determined in (g).  Kinase dead AMPK α2β2γ1 

trimers were used as a substrate for Cyclin D3-CDK4 complex and analyzed by 

mass spectrometry. A graphical overview of the sequence coverage of AMPKα2 

human protein in samples displayed by MsViz is depicted in (h). The thickness of 

the green bars is a function of the number of spectra matching the sequence 

region, while modification sites are labeled and shown as circles with size 

proportional to the number of spectra matching a given position. 

A truncated form of RB (hRB 379-928aa) was used as a positive control. A 

representative autoradiography for each kinase assay is shown.  

See also Figure S3. 

Figure 5.  AMPKα2 phosphorylation is necessary and sufficient for FAO 

repression by CDK4 

AMPK DKO SV40-immortalized MEFs were electroporated with plasmids encoding 

Myc-tagged AMPK A1, Myc-tagged AMPK A2 and Myc-tagged AMPK A2 S>A. 48h 

after, MEFs were starved for 3 hours, and treated for 2 hours with DMSO or 50µM 

A769662 before protein extraction, the western blot analysis shows the A769662 

induced ACC phosphorylation in transfected cells  (a).  

Electroporated MEFs were submitted to a FAO assay 48h after transfection, in 

which the palmitate induced OCR was measured (in % OCR compared to the basal 

OCR). The area under curve of the palmitate induced OCR was quantified in (b).  

AMPK WT and AMPK DKO SV40-immortalized MEFs were treated with DMSO or 

LY2835219 1,5µM for 24h, and submitted to a FAO assay, in which the palmitate 

induced OCR was measured (in % OCR compared to the basal OCR). The area 

under curve of the palmitate induced OCR was quantified in (c).  

AMPK WT SV40 immortalized cells were treated for 8h with DMSO or LY2835219 

1,5µM. AMP, ADP and ATP were quantified by HPLC. The AMP/ATP and ADP/ATP 

ratios are shown in (d) and (e). 

AMPK DKO myotubes were transfected with plasmids encoding Myc-tagged AMPK 

A2 and Myc-tagged AMPK A2 S>A. B. 48h after, myotubes were treated for 2 hours 

with DMSO or 50µM A769662 before protein extraction, the western blot analysis 

shows the A769662 induced ACC phosphorylation in transfected cells (g). 

Transfected myotubes were submitted to a FAO assay in which the palmitate 
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induced OCR was measured (in % OCR compared to the basal OCR). The area 

under curve of the palmitate induced OCR was quantified in (h).  

Data were expressed as mean ± s.e.m. See also Figure S4 and S5. 

 

Figure 6. CDK4 modulates oxidative metabolism and exercise capacity in vivo  

Mitochondria isolated from gastrocnemius (a) and quadriceps (b) muscle from 

Cdk4+/+ and Cdk4-/- mice were submitted to a respiration assay using fatty acids as 

a substrate.  Isolated FDB muscle fibers from Cdk4+/+ and Cdk4-/- mice were 

submitted to a FAO assay in which the palmitate induced OCR was measured (in % 

OCR compared to the basal OCR) (c). The area under curve of the palmitate 

induced OCR is shown in (d). The maximal respiration was induced by FCCP and is 

shown in (e). 

Body weight of 25-30 weeks old male Cdk4+/+ and Cdk4-/- mice was measured in (f). 

Cdk4+/+ and Cdk4-/- were submitted to an exercise capacity testing on treadmill. The 

time before exhaustion was recorded in (g). RER of the aforementioned mice is 

depicted in (h) and (i).  

30-week-old wild type mice were gavaged with 37mg/kg of LY2835219 or vehicle 

for 8 days. Body weight (j) and exercise capacity (k) were measured the day after 

the last treatment. RER of the aforementioned mice after 5 days of treatment is 

depicted in (l) and (m).  

Data were expressed as mean ± s.e.m. See also Figure S6. 

 

Figure 7. CDK4 regulation of oxidative metabolism and exercise capacity in 

vivo requires muscle AMPK 

Body weight of 12-16 weeks old AMPK WT and AMPK MDKO females gavaged with 

37mg/kg of LY2835219 or vehicle for 8 days was measured in (a). Exercise 

capacity testing on treadmill. The time before exhaustion was recorded in (b). RER 

of the aforementioned mice is depicted in (c) and (d).  

Data were expressed as mean ± s.e.m. See also Figure S7. 
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STAR Methods 

 

CONTACT FOR REAGENT AND RESOURCE SHARING 

Further information and requests for resources and reagents should be 

directed to and will fulfilled by Lluis Fajas (lluis.fajas@unil.ch) 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Cell culture 

MEFs were derived from embryos that were dissected 13.5 days after vaginal 

plugs. The Cdk4-/- (Cdk4nc), Cdk4R24C/R24C and E2f1-/- mice have been previously 

described(Denechaud et al., 2016; Lagarrigue et al., 2016).   

Prkaa1-/-, Prkaa2-/- individual KOs; and Prkaa1-/-; Prkaa2-/- double KO SV40 

immortalized MEF cells were prepared as described (Laderoute et al., 2006). They 

are referred in the manuscript as AMPK α1KO, AMPK α2KO and AMPK DKO.   

MEFs were cultured in DMEM/F12 supplemented with 10% fetal bovine serum 

(FBS, PAA Laboratories), glutamax (1mM), sodium pyruvate (1mM), non-essential 

amino-acids, 2-Mercapto-ethanol (50µM) and antibiotics in 5% CO2 37°C 

incubator. 

C2C12 myoblasts were obtained from ATCC and were cultured in low-glucose 

DMEM with 10% FBS in 5% CO2 37°C incubator. For myotube differentiation, when 

the cells reached 80-90% confluency, the culture medium was switched to DMEM 

containing 2% horse serum. The medium was changed every 2 days until day 5 to 

7 of differentiation.  

Primary myoblasts were grown in collagen coated plates cultured DMEM/F12 

supplemented with 20% fetal bovine serum, 2mM Glutamine and FGF (5ng/ml) in 

5% CO2 37°C incubator. For myotube differentiation, cells were plated on matrigel-

coated plates when the cells reached 80-90% confluency, the culture medium was 

switched to DMEM/F12 supplemented with 2% horse serum and 2mM Glutamine. 

The medium was changed every 2 days until day 4-5 of differentiation.  For rescue 

experiments, myotubes were transfected using lipofectamine 3000 (Thermo 

Fisher Scientific), at day 1 and day 3 of differentiation. The cells were assayed 48 

hours after the 2nd round of transfection.  
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Primary Cdk4+/+, Cdk4-/- and Cdk4R24C/R24C MEFs, as well as primary E2f1+/+, E2f1-/-, 

Cdk4R24C/R24C E2f1+/+ and Cdk4R24C/R24C E2f1-/- MEFs, between P2 and P5, were used 

for figures 1 and 2. SV40 immortalized MEFs were used for all other figures.    

Animal studies 

The generation of Cdk4-/-, that lack CDK4 in all tissues except pancreatic beta cells 

and were referred as Cdk4nc/nc in our previous study, was described in (Lagarrigue 

et al., 2016). Male mice were used.  

For gavage experiments, C57BL/6J male mice were obtained from Janvier Labs. 

Animals were gavaged daily with 37mg/kg of LY2835219 or vehicle for 8 days. 

Mice were acclimated and submitted to indirect calorimetry between day 4 and 

day 6.  Exercise capacity testing was performed the day after the last gavage. Body 

weight was controlled daily. Food intake was measured in the metabolic cages.  

To obtain skeletal muscle AMPK-deficient mice [AMPK_1fl/fl _2fl/fl human skeletal 

actin (HSA)-Cre_ mice on a C57Bl6- 129Sv mixed background], AMPK_1fl/fl_2fl/fl 

mice were interbred with transgenic mice expressing Cre recombinase under the 

control of the HSA promoter.  Female mice were used.  

The mice were housed in a facility on a 12-h light-dark cycle with free access to 

standard rodent chow and water.  

Mice were familiarized to the motorized rodent treadmill (Columbus Instruments, 

Columbus OH) on the J-2 and J-1 before the evaluation of exercise capacity. 

Familiarization consisted of an initial 10 min period where the treadmill speed and 

incline were set to zero with a slight electric shock grid at the back of the carpet set 

to 20 V, 0.34 mA, and 2 Hz. The treadmill speed was then increased steadily to 10 

m/min (J-2) and 12 m/min (J-1) for an additional 10 min. 

The day immediately following familiarization to the treadmill, mice were 

subjected to an exercise capacity test. For this, the mice were acclimated to the 

treadmill for 10 min, with the speed and incline set initially to zero. The treadmill 

speed was then increase to 8.5 m/min with an angle of inclination set to 0° for 9 

min. Next, the treadmill speed and incline was increased to 10 m/min and 5°, 

respectively, for 3 min. The speed was then increased by 2.5 m/min every 3 min to 

a maximum speed of 40 m/min, while inclination was increased by 5° every 9 min 
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until a maximum incline of 15°. 

Strict a priori criteria for exercise-induced exhaustion consisted in: (1) 10 

consecutive seconds on the electric grid; (2) spending more than 50% of time on 

the grid; and/or (3) lack of motivation to manual prodding. Mice were immediately 

removed from their respective lane once one or more of these criteria were 

reached.  

Following the protocol, mice were killed by cervical dislocation and skeletal 

muscles were isolated for analysis.  

All animal care and treatment procedures were performed in accordance with 

Swiss guidelines and were approved by the Canton of Vaud, Service de la 

Consommation et des Affaires Vétérinaires (SCAV) (authorization VD 3121.a). 

 

METHOD DETAILS 

Materials 

All cell culture reagents were purchased from GIBCO (Thermo Fisher Scientific). 

All chemicals, except if stated otherwise, were purchased from Sigma-Aldrich. The 

CDK4 inhibitor (LY2835219) and Compound C. were purchased from MedChem 

Express. Experiments were done using 1µM of LY2835219, unless stated 

otherwise. The AMPK allosteric activator was purchased from Abcam or MedChem 

Express. Unless stated otherwise, A769662 was used at a concentration of 50µM. 

γ�33P-ATP was purchased from Perkin Elmer.  

Immunoblot 

For western blot analysis, the cells were seeded in 6-well plates 48 hours before 

the experiment, serum starved for 3 hours, and treated with either LY2835219 or 

A769662 for 2 hours.  

Total proteins extracts were subjected to SDS-PAGE analysis and transferred to 

nitrocellulose membranes for immunoblotting. The following antibodies were 

obtained from Cell Signaling Technology : ACC (no. 3662), phosphorylated ACC 

(ser79) (no. 3661), AMPK (no.2532), phosphorylated AMPK (Thr172) (no 2535), 

Myc-tag (no. 2276), phosphorylated RB (Ser780) (no. 8180). The following 

antibodies were obtained from Santa Cruz Technology: Cdk4 (C-22; sc-260), Rb (C-
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2; sc-74562), AMPK α2 (sc-19131). A second Myc-tag antibody was used to 

analyse myotube samples (abcam ab9106) 

 The α Tubulin (no. T6199) antibody was obtained from Sigma Aldrich, the actin 

(sc-1615) was obtained from Santa Cruz Technology.  

The levels of total proteins and the levels of phosphorylation of proteins were 

analyzed on separate gels. The band intensities on developed films, fusion FX 

images or chemidoc images or were quantified using Fiji image processing package 

(Schindelin et al., 2012). 

Plasmid constructs and mutagenesis 

pDONR223-hPRKAA1 (ref:23871), pDONR223-hPRKAA2 (ref:23671), pDONR223-

hPRKAB1 (ref:23360), pDONR223-hPRKAB2 (ref:23647), pDONR223-hPRKAG1 

(ref:23718), pDONR223-hPRKAG2 (ref:23689), pDONR223-hPRKAG3 (ref:23549) 

were provided from Addgene. The different GST subunits of human AMPK were 

obtained using the pDEST pGEX-2T vector of Gateway Cloning Technology 

(Invitrogen) starting from previously described pDONR223AMPK constructs. The 

different serine-to-alanine mutants of GST-hPRKAA2 were generated using a 

Quick-Change Site-Directed Mutagenesis kit (Stratagene) with the following 

primers (Supplemental Table 2). A similar strategy was used to obtain the 

truncated versions of GST-hPRKAA2 and the different serine-to-alanine mutants 

using the following primers (Supplemental Table 2).  

The Myc-hPRKAA1, the Myc-hPRKAA2 and the Myc-hPRKAA2-S345A-S377A-

T485A-S529A were obtained using the pDEST pCDNA3 MYC vector previously and 

the above described pDONR223-human AMPK constructs. pDONR-hRB 379-928aa 

was subcloned from pCMV human RB and generated using the pDONR221 vector 

of Gateway Cloning Technology. The pGEX-2T hRB 379-928aa was obtained using 

the pDEST pGEX-2T from Gateway Cloning Technology. 

GST production 

Independent AMPK subunits were cloned in the pDEST pGEX-2T and expressed in 

BL21 bacteria. GST-purified proteins were re-suspended in 50mM Tris.HCl [pH 8], 

100 mM NaCl, 5 mM DTT and 20% glycerol buffer. 

CDK4 Kinase assay 
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Kinase assays were performed using Independent AMPK subunits proteins and 

500ng of recombinant RB protein (Santa Cruz) as a substrate in kinase buffer (25 

mM Tris.HCl [pH 7.5], 150 mM NaCl, 10 mM MgCl2, 1 mM DTT, 5 mM Na4P2O7, 50 

mM NaF, 1 mM vanadate and protease inhibitor cocktail) with 40 μM ATP and 8 

μCi γ�33PATP (Perkin Elmer) for 30 min at 30°C. Recombinant CDK4/cyclin D3 

kinase and CDK4/Cyclin D1 (ProQinase) were used. RB was used as a positive 

control.  

Boiling the samples for 5 min in the presence of denaturing sample buffer stopped 

the reaction. Samples were subsequently subjected to SDS–PAGE, and transferred 

to a nitrocellulose membrane before being exposed to an X-ray film at -80°C during 

4 hours or over night. Recombinant protein loading was confirmed by SYPRO Ruby 

protein Blot Staining (Life Technologies).  

For mass spectrometry, recombinant kinase dead AMPK trimmers (α2β2γ1) were 

used as a substrate for CDK4/CyCD3. Recombinant kinase dead AMPK trimers 

(α2β2γ1) were produced by the DG. Hardie lab.  

Mitochondrial isolation 

Quadriceps muscle from Cdk4+/+ or Cdk4-/- mice were homogenized in 2ml cold 

buffer I. Tissue homogenization was obtained at 1500rpm after 30 strokes. The 

homogenized extract was then centrifuged at 600g for 10 min at 4°C in order to 

remove cellular debris. This step was performed three times. The mitochondrial 

fraction was pelleted at 10000g for 10 min at 4°C and subsequently washed using 

buffer II. The mitochondrial pellet was suspended in 80ul cold buffer II.  

Mitochondria were immediately used for seahorse analysis.  Buffers I composition 

is as follows: 210 mM mannitol, 70 mM sucrose, 5 mM HEPES, 1 mM EGTA, 0.5% 

BSA pH to 7.4. Buffer II composition is as follows :  210 mM mannitol, 70 mM 

sucrose, 10 mM MgCl2, 5 mMK2HPO4, 10 mM MOPS, 1 mM EGTA pH to 7.4.  

 

Isolation of adult skeletal muscle fibers 

 

Flexor digitorum brevis (FDB) muscles were incubated for 45 min at 37°C in an 

oxygenated ‘Krebs-Hepes’ solution containing 0.2% collagenase type IV (Gibco). 

Muscles were then washed twice in DMEM/F12 supplemented with 2% fetal 
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bovine serum and mechanically dissociated by repeated passages through fire-

polished Pasteur pipettes of progressively decreasing diameter. Dissociated fibers 

were plated directed onto Seahorse XF24 tissue culture dishes coated with 

Matrigel and allowed to adhere to the bottom of the dish for 2h. After checking the 

adhesion of the fibers, a seahorse Fatty acid oxidation was performed as described  

The Krebs-Hepes solution contains NaCl 135.5mM, MgCl2 1.2mM, KCl 5.9mM, 

glucose 11.5mM, Hepes 11.5mM and CaCl2 mM. 

 

Seahorse analyses 

For seahorse analysis, the cells were seeded 16 hours before the experiment.  

Mitochondrial function was determined with an XF-24 extracellular flux analyzer 

(Seahorse Bioscience). Oxygen consumption Rate (OCR) and Extracellular 

acidification rate (ECAR) was measured in adherent MEFs. Control and mutant 

fibroblast cells were seeded in an XF 24-well cell culture microplate at a density of 

7×105 cells per cell in 200 μL DMEM/F12 media. Cells were incubated for 16 h at 

37 °C in 5% CO2 before the assay. OCR was expressed as pmol of O2 per minute and 

was normalized by protein content a Pierce BCA Protein Assay protocol (Thermo 

Fisher Scientific).  ECAR was expressed as mpH per minute and was normalized by 

protein content a Pierce BCA Protein Assay protocol (Thermo Fisher Scientific).  

For glycolysis experiments, just before the experiment the cells were washed, 

and the growth medium was replaced with DMEM medium containing only 2mM 

Glutamine. Cells were then pre-incubated for 1 h at 37 °C without CO2 to allow cells 

to pre-equilibrate with the assay media before starting the glycolysis test 

procedure. After measuring baseline ECAR, ECAR was measured after an acute 

injection of 25mM Glucose. The glycolytic rate was calculated as glucose 

dependent ECAR. It was calculated as follows: Glucose induced ECAR-basal ECAR.  

For fatty acid oxidation experiments, just before the experiment the cells are 

washed, and the growth medium was replaced with KHB containing 2.5mM 

Glucose and 1.5mM of carnitine. Cells were then pre-incubated for 1 h at 37 °C 

without CO2 to allow cells to pre-equilibrate with the assay media before starting 

the fatty acid oxidation procedure. After measuring baseline OCR as an indication 

of basal respiration, OCR was measured after an acute injection of 400µM or 
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150µM of palmitate coupled to BSA (for MEFs and myotubes respectively).  

For FDB muscle fibers 125µM of palmitate coupled to BSA, 400nM of FCCP and 

1µM of Antimycine A were injected directly onto the fibers using the seahorse 

analyzer. Fatty acid oxidation was induced by the palmitate injection. The 

uncoupling agent FCCP induced the maximal respiration.  

OCR was expressed as pmol of O2 per minute and was normalized by total DNA 

content.  

For mitochondrial respiration, 50 μl of mitochondrial suspension (containing 

10µg of freshly isolated mitochondria) were used per well. The XF24 cell culture 

microplate was centrifuged at 2000g for 20 minutes at 4 °C.   The assay medium 

contained 250 mM sucrose, 15 mM KCl, 1 mM EGTA, 5 mMMgCl2, 30 mM K2HPO4, 

2mM Hepes and 0.2% FFA-Free BSA. 0.5mM Malate, 80µM PalmitoylCoA, 240µM 

Carnitine and 4mM ADP  diluted in assay medium were added after the 

centrifugation of the mitochondria to obtain a final volume of 525µl per well.  After  

10 min of incubation at 37°C without CO2 the mitochondrial respiration was 

measured using the seahorse analyzer.   

 

Immunopreciptation 

Myotubes or liquid N2 grinded muscle samples were lysed in M-PER™ buffer 

(Thermofisher Scientific) and incubated in agitation for one hour at 4°C. 2-5 mg of 

protein was inmunoprecipitated overnight with an AMPKα2 antibody (Santa Cruz, 

sc-19131) and Protein G coupled with magnetic beads (Sigma, 1004D) in the 

following buffer (IP buffer): 25 mM TRIS pH 7.9, 5 mM MgCl2, 10% Glycerol, 100 

mM KCl, 0.1% NP40, 0.3 mM DTT. Next day, beads were washed for times with the 

IP buffer and frozen. Samples were used for mass spectrometry.    

 

Mass spectrometry 

In the in vitro assays, protein samples were loaded on a 12 % mini polyacrylamide 

gel and migrated about 3 cm, while in the immunoprecipitation experiments 

proteins were loaded on an 8% gel and fully migrated. After Coomassie staining, 

visible band between 50 and 75 kDa corresponding to AAPK2 was excised and 

digested with sequencing-grade trypsin (Promega). Extracted tryptic peptides 
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were dried and resuspended in 0.05% trifluoroacetic acid, 2% (v/v) acetonitrile 

for mass spectrometry analyses. 

Tryptic peptide mixtures were injected on an Ultimate RSLC 3000 nanoHPLC 

system (Dionex, Sunnyvale, CA, USA) interfaced via a nanospray source to a high 

resolution mass spectrometer based on Orbitrap technology: Fusion Tribrid or 

QExactive Plus  (Thermo Fisher, Bremen, Germany), depending on the experiments 

considered. Peptides were loaded onto a trapping microcolumn Acclaim 

PepMap100 C18 (20 mm x 100 μm ID, 5 μm, Dionex) before separation on a C18 

reversed-phase analytical nanocolumn at a flowrate of 0.25 μl/min, using a 

gradient from 4 to 76 % acetonitrile in 0.1 % formic acid (total time: 65min).  

The in vitro experiments were analysed with a Fusion mass spectrometer 

interfaced to a custom packed 40-cm C18 column (75 μm ID, 100Å, Reprosil Pur 

1.9 um particles). Full MS survey scans were performed at 120’000 resolution. 

Data-dependent acquisition was controlled by Xcalibur 3.0 software (Thermo 

Fisher) and applied a top speed precursor selection strategy to maximize 

acquisition of peptide tandem MS spectra with a maximum cycle time of 3s. 

Multiple-charge precursor ions were isolated in the quadrupole with a window of 

1.6 m/z width and then dynamically excluded from further selection during 60s. 

HCD fragmentation was performed in the ion routing multipole with 32% 

normalized collision energy and fragment ions were measured in the ion trap. 

The immunoprecipitation experiments were analysed with a Q-Exactive Plus 

instrument interfaced to an Easy Spray C18 PepMap column (50cm x 75µm ID, 

2µm, 100Å, Dionex). Full MS survey scans were performed at 70’000 resolution. In 

data-dependent acquisition controlled by Xcalibur 3.1 software (Thermo Fisher), 

the 10 most intense multiple-charge precursor ions detected in the full MS survey 

scan were selected for higher energy collision-induced dissociation (HCD, 

normalized collision energy NCE=27 %) and analysis in the orbitrap at 17’500 

resolution. The window for precursor isolation was of 1.5 m/z units around the 

precursor and selected fragments were excluded for 60s from further analysis. 

MS data were analysed using Mascot 2.6 (Matrix Science, London, UK) set up to 

search the UniProt database (www.uniprot.org) restricted to Homo sapiens  (in 

vitro experiments) or Mus musculus (immunoprecipitation experiments) taxonomy 
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(SwissProt, November 2016 version: 20’130 and 16’846 sequences, respectively). 

Trypsin (cleavage at K,R) was used as the enzyme definition, allowing 3 missed 

cleavages. Mascot was searched with a parent ion tolerance of 10 ppm and a 

fragment ion mass tolerance of 0.5 (Fusion MS data) or 0.02 Da (QExactive MS 

data). Iodoacetamide derivative of cysteine was specified in Mascot as a fixed 

modification. N-terminal acetylation of protein, oxidation of methionine, and 

phosphorylation of serine, threonine or tyrosine were specified as variable 

modifications. 

Scaffold software (version 4.7.5, Proteome Software Inc., Portland, OR) was used to 

validate MS/MS based peptide and protein identifications, and to perform dataset 

alignment. Peptide identifications were accepted if they could be established at 

greater than 90.0% probability by the Scaffold Local FDR algorithm. Protein 

identifications were accepted if they could be established at greater than 95.0% 

probability and contained at least 2 identified peptides. Protein probabilities were 

assigned by the Protein Prophet algorithm. Proteins that contained similar 

peptides and could not be differentiated based on MS/MS analysis alone were 

grouped to satisfy the principles of parsimony. Proteins sharing significant peptide 

evidence were grouped into clusters. 

MsViz software (Martin Campos et al., 2017) was used to compare sequence 

coverage and phosphorylation of the AMPK alpha 2 protein in the in vitro 

experiments. 

HPLC  

Cells were grown in 10 cm dishes and treated as indicated in the figure legends. 

Culture medium was removed by aspiration, rinsed with ultra pure water, flash 

frozen with liquid nitrogen, thawed on ice, and followed by immediate addition of 

ice-cold 0.4M perchloric acid (500 µl). Cells were scrapped off thoroughly, and 

transferred to 1.5-ml microfuge eppendorf tubes. Samples were incubated at 4°C 

for 45 minutes, and centrifuged at 14,000 rpm at 4C for 10 minutes. The 

supernatant (500 µl) was collected, mixed with 500µl K2CO3 4M, and incubated at 

least 1h at -80°C. The samples were again centrifugated at 4C for 10 minutes, the 

supernatant collected and tested on HPLC. 

External standards stocks were prepared in ultra pure water, at 10 mg/ml, and 
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treated in exactly the same way as the samples. 

For normalization, protein measurements were performed using a Pierce BCA 

Protein Assay protocol (Thermo Fisher Scientific). In parallel DNA was extracted 

from the pellets and quantified.  

The gradient elution was performed as described (Manfredi et al., 2002) on a 4.6-

mmi.d, 150-mm, Kinetex 5u EVO C18 100A HPLC column (Phenomenex) with two 

buffers at a rate of 0.5 ml/min. Buffer A contained 25mM NaH2PO4, 100 mg/liter 

tetrabutylammonium hydrogen sulfate, pH 5. Organic buffer B was composed of 

10% (v/v) acetonitrile in 200mM NaH2PO4, 100 mg/liter tetrabutylammonium 

hydrogen sulfate, pH 4.0. Buffers were filtered and degassed. The gradient was 

100% buffer A from 0–5 min, 100% buffer A to 100% buffer B from 5–20 min, and 

100% buffer A from 20 to 31 min for column reequilibration, which was sufficient 

to achieve stable baseline conditions. 25 microliters of prepared sample was 

autoinjected and UV monitored at 260nm from 0 to 31 min for phosphorylated 

nucleotides. Peaks were identified by their retention times and by using co-

chromatography with standards. 

Each standard of interest was first subjected to chromatography 

individually to obtain its retention time (Manfredi et al., 2002) and to be able to 

later identify each compound in a standard mixture. A standard curve for each 

compound was constructed by plotting peakheight s (lV) versus concentration. 

Linear curves were obtained with R2 values > 0.95. The quantification of 

nucleotides in the sample was performed using the external standard calibration, 

integrating sample peak heights against corresponding standard curves. 

mRNA analysis.  

Muscle tissues were grinded to powder in liquid nitrogen. mRNAs from muscle 

was isolated using TRIREAGENT according to the manufacturer’s protocol. One 

microgram of the RNA was subsequently reverse-transcribed  (Superscript II, Life 

Technologies) and quantified via real-time quantitative PCR using an ABI 7900HT 

instrument. qPCR analysis was performed using a 7900HT Fast Real-Time PCR 

System (Applied Biosystems) and SYBR Green detection of the amplified products. 

The relative quantification for a given gene was corrected to RS9 mRNA values 

(oligonucleotide sequences are provided in Table 3).  
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QUANTIFICATION AND STATISTICAL ANALYSIS 

The results were expressed as means ± standard error of the means (s.e.m). 

Comparisons between 2 groups were performed with an unpaired 2-tailed 

Student’s t test and multiple group comparisons were performed by unpaired 1-

way ANOVA followed by Tukey’s test and 2-way ANOVA, followed by Tukey’s test. 

All p-values below 0.05 were considered significant. Statistical significance values 

were represented by asterisks corresponding to *p<0.05,  **p<0.001,  

***p<0.001and ****p<0.0001.   
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