59 research outputs found

    Evolution of Music by Public Choice

    Get PDF
    Music evolves as composers, performers, and consumers favor some musical variants over others. To investigate the role of consumer selection, we constructed a Darwinian music engine consisting of a population of short audio loops that sexually reproduce and mutate. This population evolved for 2,513 generations under the selective influence of 6,931 consumers who rated the loops’ aesthetic qualities. We found that the loops quickly evolved into music attributable, in part, to the evolution of aesthetically pleasing chords and rhythms. Later, however, evolution slowed. Applying the Price equation, a general description of evolutionary processes, we found that this stasis was mostly attributable to a decrease in the fidelity of transmission. Our experiment shows how cultural dynamics can be explained in terms of competing evolutionary forces

    Морфологічні зміни підщелепної слинної залози при гіпертонічній хворобі

    Get PDF
    Вступ. Значна увага приділяється питанням, пов'язаним з дисциркуляторними змінами в різних органах, пов’язаних з артеріальною гіпертензією і, зокрема, у великих слинних залозах. Доступна література містить недостатньо інформації про морфологічні зміни в підщелепних слинних залозах людини при гіпертонічній хворобі. Метою роботи є вивчення морфофункціональних змін внутрішньоорганних судин і тканин підщелепної слинної залози у хворих на гіпертонічну хворобу

    Magnifying transmitter

    Get PDF
    The magnifying transmitter was intended by Nicola Tesla for the wireless transmission of electrical energy. It is a high power harmonic oscillator, an air-core, multiple-resonant transformer that can generate very high voltages. In normal operation the magnifying transmitter is relatively silent, generating a high power electric field, but if the output voltage exceeds the design voltage of the elevated terminal, high-voltage sparks will strike out from the electrode into the air. In his autobiography, Tesla stated that "...I feel certain that of all my inventions, the Magnifying Transmitter will prove most important and valuable to future generations.

    A metabolic signature of long life in Caenorhabditis elegans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many <it>Caenorhabditis elegans </it>mutations increase longevity and much evidence suggests that they do so at least partly via changes in metabolism. However, up until now there has been no systematic investigation of how the metabolic networks of long-lived mutants differ from those of normal worms. Metabolomic technologies, that permit the analysis of many untargeted metabolites in parallel, now make this possible. Here we use one of these, <sup>1</sup>H nuclear magnetic resonance spectroscopy, to investigate what makes long-lived worms metabolically distinctive.</p> <p>Results</p> <p>We examined three classes of long-lived worms: dauer larvae, adult Insulin/IGF-1 signalling (IIS)-defective mutants, and a translation-defective mutant. Surprisingly, these ostensibly different long-lived worms share a common metabolic signature, dominated by shifts in carbohydrate and amino acid metabolism. In addition the dauer larvae, uniquely, had elevated levels of modified amino acids (hydroxyproline and phosphoserine). We interrogated existing gene expression data in order to integrate functional (metabolite-level) changes with transcriptional changes at a pathway level.</p> <p>Conclusions</p> <p>The observed metabolic responses could be explained to a large degree by upregulation of gluconeogenesis and the glyoxylate shunt as well as changes in amino acid catabolism. These responses point to new possible mechanisms of longevity assurance in worms. The metabolic changes observed in dauer larvae can be explained by the existence of high levels of autophagy leading to recycling of cellular components.</p> <p>See associated minireview: <url>http://jbiol.com/content/9/1/7</url></p

    Classifying organisms and artefacts by their outline shapes

    Get PDF
    We often wish to classify objects by their shapes. Indeed, the study of shapes is an important part of many scientific fields, such as evolutionary biology, structural biology, image processing and archaeology. However, mathematical shape spaces are rather complicated and nonlinear. The most widely used methods of shape analysis, geometric morphometrics, treat the shapes as sets of points. Diffeomorphic methods consider the underlying curve rather than points, but have rarely been applied to real-world problems. Using a machine classifier, we tested the ability of several of these methods to describe and classify the shapes of a variety of organic and man-made objects. We find that one method, based on square-root velocity functions (SRVFs), outperforms all others, including a standard geometric morphometric method (eigenshapes), and that it is also superior to human experts using shape alone. When the SRVF approach is constrained to take account of homologous landmarks it can accurately classify objects of very different shapes. The SRVF method identifies a shortest path between shapes, and we show that this can be used to estimate the shapes of intermediate steps in evolutionary series. Diffeomorphic shape analysis methods, we conclude, now provide practical and effective solutions to many shape description and classification problems in the natural and human sciences.</p

    Under the Skin of a Lion: Unique Evidence of Upper Paleolithic Exploitation and Use of Cave Lion (Panthera spelaea) from the Lower Gallery of La Garma (Spain)

    Get PDF
    ABSTRACT: Pleistocene skinning and exploitation of carnivore furs have been previously inferred from archaeological evidence. Nevertheless, the evidence of skinning and fur processing tends to be weak and the interpretations are not strongly sustained by the archaeological record. In the present paper, we analyze unique evidence of patterned anthropic modification and skeletal representation of fossil remains of cave lion (Panthera spelaea) from the Lower Gallery of La Garma (Cantabria, Spain). This site is one of the few that provides Pleistocene examples of lion exploitation by humans. Our archaeozoological study suggests that lion-specialized pelt exploitation and use might have been related to ritual activities during the Middle Magdalenian period (ca. 14800 cal BC). Moreover, the specimens also represent the southernmost European and the latest evidence of cave lion exploitation in Iberia. Therefore, the study seeks to provide alternative explanations for lion extinction in Eurasia and argues for a role of hunting as a factor to take into account
    corecore