3,712 research outputs found
Influence of mass moment of inertia on normal modes of preloaded solar array mast
Earth-orbiting spacecraft often contain solar arrays or antennas supported by a preloaded mast. Because of weight and cost considerations, the structures supporting the spacecraft appendages are extremely light and flexible; therefore, it is vital to investigate the influence of all physical and structural parameters that may influence the dynamic behavior of the overall structure. The study primarily focuses on the mast for the space station solar arrays, but the formulations and the techniques developed in this study apply to any large and flexible mast in zero gravity. Furthermore, to determine the influence on the circular frequencies, the mass moment of inertia of the mast was incorporated into the governing equation of motion for bending. A finite element technique (MSC/NASTRAN) was used to verify the formulation. Results indicate that when the mast is relatively flexible and long, the mass moment inertia influences the circular frequencies
Design Feasibility Study of a Space Station Freedom Truss
Here, the focus is on the design and configuration feasibility of the short spacer for the Space Station Program in its launch configuration. The product of this study is being used by Rockwell International (Rocketdyne Division) as they continue their design concept of the current short spacer configuration. It is anticipated that the launch loads will dominate the on-orbit loads and dictate the design configuration of the short spacer. At the present time, the on-orbit loads have not been generated. The structural analysis discussed herein is based on the transient events derived from the Space Transportation System (STS) Interface Control Document (ICD). The transient loading events consist of liftoff loads, landing loads, and emergency landing loads. The quasi-static loading events have been neglected, since the magnitude of the acceleration factors are lower than the transient acceleration factors. The normal mode analyses presented herein are based on the most feasible configurations with acceptable stress ranges
A transient plasticity study and low cycle fatigue analysis of the Space Station Freedom photovoltaic solar array blanket
The Space Station Freedom photovoltaic solar array blanket assembly is comprised of several layers of materials having dissimilar elastic, thermal, and mechanical properties. The operating temperature of the solar array, which ranges from -75 to +60 C, along with the material incompatibility of the blanket assembly components combine to cause an elastic-plastic stress in the weld points of the assembly. The weld points are secondary structures in nature, merely serving as electrical junctions for gathering the current. The thermal mechanical loading of the blanket assembly operating in low earth orbit continually changes throughout each 90 min orbit, which raises the possibility of fatigue induced failure. A series of structural analyses were performed in an attempt to predict the fatigue life of the solar cell in the Space Station Freedom photovoltaic array blanket. A nonlinear elastic-plastic MSC/NASTRAN analysis followed by a fatigue calculation indicated a fatigue life of 92,000 to 160,000 cycles for the solar cell weld tabs. Additional analyses predict a permanent buckling phenomenon in the copper interconnect after the first loading cycle. This should reduce or eliminate the pulling of the copper interconnect on the joint where it is welded to the silicon solar cell. It is concluded that the actual fatigue life of the solar array blanket assembly should be significantly higher than the calculated 92,000 cycles, and thus the program requirement of 87,500 cycles (orbits) will be met. Another important conclusion that can be drawn from the overall analysis is that, the strain results obtained from the MSC/NASTRAN nonlinear module are accurate to use for low-cycle fatigue analysis, since both thermal cycle testing of solar cells and analysis have shown higher fatigue life than the minimum program requirement of 87,500 cycles
Structural Optimization Methodology for Rotating Disks of Aircraft Engines
In support of the preliminary evaluation of various engine technologies, a methodology has been developed for structurally designing the rotating disks of an aircraft engine. The structural design methodology, along with a previously derived methodology for predicting low-cycle fatigue life, was implemented in a computer program. An interface computer program was also developed that gathers the required data from a flowpath analysis program (WATE) being used at NASA Lewis. The computer program developed for this study requires minimum interaction with the user, thus allowing engineers with varying backgrounds in aeropropulsion to successfully execute it. The stress analysis portion of the methodology and the computer program were verified by employing the finite element analysis method. The 10th- stage, high-pressure-compressor disk of the Energy Efficient Engine Program (E3) engine was used to verify the stress analysis; the differences between the stresses and displacements obtained from the computer program developed for this study and from the finite element analysis were all below 3 percent for the problem solved. The computer program developed for this study was employed to structurally optimize the rotating disks of the E3 high-pressure compressor. The rotating disks designed by the computer program in this study were approximately 26 percent lighter than calculated from the E3 drawings. The methodology is presented herein
Classical Loop Actions of Gauge Theories
Since the first attempts to quantize Gauge Theories and Gravity in the loop
representation, the problem of the determination of the corresponding classical
actions has been raised. Here we propose a general procedure to determine these
actions and we explicitly apply it in the case of electromagnetism. Going to
the lattice we show that the electromagnetic action in terms of loops is
equivalent to the Wilson action, allowing to do Montecarlo calculations in a
gauge invariant way. In the continuum these actions need to be regularized and
they are the natural candidates to describe the theory in a ``confining
phase''.Comment: LaTeX 14 page
Advanced TCAD simulation and calibration of gallium oxide vertical transistor
In this paper, advanced β-Ga2O3 TCAD simulation parameters and methodologies are presented by calibrating simulation setup to vertical junctionless multi-gate transistor experimental data. Through careful calibration, several important β-Ga2O3 device physics are identified. The effects of compensation doping and incomplete ionization of dopants are investigated. Electron Philips unified carrier mobility (PhuMob) model, which can capture the temperature effect, is used. We also show that interfacial traps possibly play no role on the non-ideal sub-threshold slope (SS) and short channel effect is the major cause of SS degradation. The breakdown mechanism of the junctionless Ga2O3 transistor is also discussed and is shown to be limited by channel punch-through in off-state. The calibrated models match experimental Capacitance-Voltage (CV) and Current-Voltage (IV) well and can be used to predict the electrical performance of novel β-Ga2O3 devices
Using the phone to increase vaccine acceptance
In the context of the COVID-19 pandemic, we develop and test experimentally three phone-based interventions to increase vaccine acceptance in Mozambique. The first endorses the vaccine with a simple positive message. The second adds the activation of social memory on the country’s success in eradicating wild polio with vaccination campaigns. The third further adds a structured interaction with the participant to develop a critical view towards misleading information and minimize the sharing of fake news. We find that combining the endorsement with the stimulation of social memory and the structured interaction increases vaccine acceptance and trust in institution.preprintpublishe
Terabit-per-square-inch data storage using phase-change media and scanning electrical nanoprobes
©2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.A theoretical study of the write, read, and erase processes in electrical scanning probe storage on phase-change media is presented. Electrical, thermal, and phase-transformation mechanisms are considered to produce a physically realistic description of this new approach to ultrahigh-density data storage. Models developed are applied to the design of a suitable storage layer stack with the necessary electrical, thermal, and tribological properties to support recorded bits of nanometric scale. The detailed structure of nanoscale crystalline and amorphous bits is also predicted. For an optimized trilayer stack comprising Ge2Sb2Te5 sandwiched by amorphous or diamond-like carbon layers, crystalline bits were roughly trapezoidal in shape while amorphous bits were semi-ellipsoidal. In both cases, the energy required to write individual bits was very low (of the order of a few hundred picoJoules). Amorphous marks could be directly overwritten (erased), but crystalline bits could not. Readout performance was investigated by calculating the readout current as the tip scanned over isolated bits and bit patterns of increasing density. The highest readout contrast was generated by isolated crystalline bits in an amorphous matrix, but the narrowest readout pulses arose from isolated amorphous marks in a crystalline background. To assess the ultimate density capability of electrical probe recording the role of write-induced intersymbol interference and the thermodynamic stability of nanoscale marks were also studied
Automated Grain Yield Behavior Classification
A method for classifying grain stress evolution behaviors using unsupervised learning techniques is presented. The method is applied to analyze grain stress histories measured in-situ using high-energy X-ray diffraction microscopy (HEDM) from the aluminum-lithium alloy Al-Li 2099 at the elastic-plastic transition (yield). The unsupervised learning process automatically classified the grain stress histories into four groups: major softening, no work-hardening or softening, moderate work-hardening, and major work-hardening. The orientation and spatial dependence of these four groups are discussed. In addition, the generality of the classification process to other samples is explored
- …