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Summary

Earth-orbiting spacecraft often contain solar arrays or

antennas supported by a preloaded mast. Because of weight

and cost considerations, the structures supporting the space-

craft appendages are extremely light and flexible; therefore, it

is vital to investigate the influence of all physical and struc-

tural parameters that may influence the dynamic behavior of
the overall structure. The study reported in this paper primar-

ily focuses on the mast for the space station solar arrays, but

the formulations and the techniques developed in this study

apply to any large and flexible mast in zero gravity. Further-

more, to detcrmine the influence on the circular frequencies,
the mass moment of inertia of the mast has been incorporated

into the governing equation of motion for bending. A finite

element technique (MSC/NASTRAN) has been used tO Verify

the formulation derived in this paper. Results indicate that

when the mast is relatively flexible and long, the mast mass

moment of inertia influences the circular frequencies.

Introduction

With the evolution of man-tended or manned spacecraft

such as Space Station Freedom comes the need for generating

more electrical power than for an ordinary satellite. More

electrical power simply translates to having a greater number

of solar arrays with larger surface areas. In order to have a

large surface area solar array and yet be able to package the

folded solar array in a launch vehicle, the solar arrays should

be designed with a relatively large aspect ratio. Because solar

arrays for manned spacecraft require a large aspect ratio, their

supporting structures (preloaded masts) will be as tall as and

much more flexible than the mast for an ordinary satellite.

Therefore, the assumptions made to formulate the governing

equation of motion for a compact solar array will not be

applicable fora solar array with alarge aspect ratio.

Although extensive studies have been performed on

preloaded mast vibrations (refs. 1 and 2), the influence of the
mast mass moment of inertia has not been considered.

Our studies focused on developing the governing equation

of motion for a preloaded beam, representing a typical mast,

with a tip mass, representing the storage boxes of the solar

cells (fig. 1.) The equation of motion for the beam was used

to derive the eigen condition (characteristic equation) whose

roots are the circular frequencies of the structure in question.
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The accuracy of these circular frequencies is the key in deter-

mining the forces and moments resulting from an outside

excitation, such as space shuttle docking loads. The loads

determined from the circular frequencies with high modal

mass participation are often used to design the structure.

Symbols

C constant

EA axial stiffness

Elcs flexural stiffness



F force
I moment of inertia of mast cross section

K preload parameter

Ke tip mass preload parameter

L length of mast

M moment

Mr tip mass

m mass of mast

m' distributed mass

P preload

PD component of preload in lateral direction

Q shear load

T function of time

t time

V lateral deformation as function of beam length and time

v lateral deformation as function of beam length

x distance

fl frequency parameter

t5 axial deflection

O slope of deflection

Z characteristic value

p mass density of the mast

to circular frequency

_) partial derivative

Subscript:

n nth root

Superscripts:

' differentiation with respect to length of mast

differentiation with respect to time

Theory

The solar arrays masts are essentially bars that are subject

to bending vibrations. The source of the vibrations may be the

interaction of the propulsion system, and/or the shuttle docking.

Since a bar is an elastic body, its mass and stiffness are distrib-

uted continuously along its length. For an elastic body the

number of the generalized coordinates needed to describe the
motion of the bar becomes infinite, and, as a result, the number

of modes and mode shapes become infinite.

To formulate the equation of motion for and analyze a bar

under a bending vibration, the following assumptions were

made: (1) the material is homogeneous and isotropic, and it

follows Hooke's law; (2) the continuum representing the mast

is conservative, and the structural damping and viscous

damping (frictional forces) are nearly zero; (3) the magnitude

of displacement is small when compared to the mast length,

so the sine and tangent of the angle are equal to the angle of

deflection; (4) the mast has a constant cross-sectional area

and constant bending stiffness along its length; and (5) the

supporting spacecraft is rigid and massive when compared to

the solar array mast, and the mast is fixed at its base. It is

important to note that the boundary conditions for the mast
are derived based on the last assumption.

The mechanism for preloading the mast (fig. 1) can be

described as the tensioning of the solar array substrates by
some force at their edges; a compressive force of equal mag-
nitude will act on the mast. The substrates are tensioned to

achieve flat surfaces and to increase their natural frequency to

some nonzero value.

In this study the assumption has been made that the
masses of the solar cell storage boxes are concentrated at only

one point, the tip of the mast. Such an assumption is appro-

priate when analyzing the mast under a bending vibration

since the storage boxes will experience the same direction

and magnitude of motion during any bending mode. In con-

trast, one tip mass is not a valid assumption when analyzing
the mast under a torsional vibration, and an appropriate mass

moment inertia of the solar cell storage boxes should be con-

sidered. In summary, the continuum representing the mast is

a preloaded mast that is fixed at one end and free at the other,

where the tip mass is placed.

V Preload7
l

L- - - l
1

/ __ /
/ /

Beam / Tip mass J
dx

Figure 2.mPreloaded beamwith a tip mass.

Governing Equation of Motion

Figure 2 shows a mast of length L, whose cross-sectional

area is A and bending stiffness is Elcs. The preload has a mag-
nitude P in thc direction shown, and the tip mass has a mag-

nitude MT. one very important point to be made here is that

because of the mechanism for pr-eloadi-ng the mast, the direc:

tion of the load always remains towards the root of the mast,

regardless of the deflection and the mast mode shapes. This
occurs because the solar cell substrates are essentially mem-

branes and they react only to tensile loading. The magnitude

of the preload remains constant, regardless of the magnitude

of deflection, since the solar cell substrates contain negator
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Figure3.--Free-body diagramof a differentialelementof the
preloaded beam.

spring mechanisms at their edges that keep the magnitude of

the preload constant.

Figure 3 shows the free-body diagram of a differential

element of the preloaded mast with all the forces and

moments acting on its body. The sum of the loads can be

expressed as follows:

,Y_,F x = 0, which results in P = P (1)

3Q = -pA 32V
ZF v = 0, which results in _ 3t 2 (2)

o34V _ _2V _ ( 6_2V'_ 032V

EIc -XT+ -XT• -PI-_t2L--_-J=-PA_t 2
(7)

Since the displacement V is a function of length x and time t,

the method of separation of variables is used:

V = f(x,t) = v(x)T(t) (8)

For a harmonic excitation

T(t) = sin wt (9)

where t9 is the circular frequency of motion.

Substituting equation (9) into equation (8) and then differ-

entiating with respect to x and t and substituting the results
into equation (7) gives the following:

v .... +(P+plw2)v"-(PA°j2)v=Ot,  E1cs)
(10)

Equation (10) is similar to equation (7), but it represents the

motion at any given time, since v is a function only of x.

5".M o = 0, which results in Q = oqx 0x
(3)

Using the elementary theory of strength of material gives

c92V

M = Elcs -o3x2 (4)

and

3V
O = -- (5)

Ox

By differentiating equation (4) with respect to x once,

differentiating equation (5) with respect to t twice, and then

substituting the results into equation (3), we obtain

Q = Elcs --_ o_ --_--t2) (6)

Finally, differentiating equation (6) with respect to x and sub-

stituting it into equation (2) gives the equation of motion for

a preloaded mast with a tip mass:

Discussion of Terms in Equation (10)

When the preload and the mass moment of inertia are

zero, equation (10) reduces to the equation of motion for a

simple beam. In equation (10) the first term, v-9, represents
the bending motion of a differential element of length dx; the

( pAm2 )v
third term, _. Elcs ) , represents the linear inertia of a differ-

ential element of length dx that opposes the motion; and the

(P + PI°92 lv,,second term, Elcs , is the contribution of the preload

and the mass moment of inertia. The physical meaning of the

second term can be described as follows: (1) When the mast

is deformed laterally, the preload P tends to deform (bend) it

even further, and the magnitude of this added displacement is

proportional to the preload times the displacement lever arm;
and (2) when the mast is deformed laterally, the angular
acceleration tends to assist the bending of the mast in the

same direction as the preload. It is interesting to note that the

magnitude of this bending effect is influenced by the dis-

placement v and by the circular frequency at which the sys-

tem is vibrating. For high circular frequencies, this effect
dominates the influence of preioad.



General Solution

For simplicity, let us define

K 2 = P+P leo2

Elcs

and

(11)

f14 = PA w2 (12)

Elcs

where fl is the frequency parameter (ref. 2).

Substituting equations (11) and (12) into equation (10)

results in

v .... + K2v "-fl4v=O (13)

Equation (13) is a fourth order ordinary differential equation

with the general solution

v = C a

where

cosh ;taX + C 2 sinh 2ix

+ C 3 cos _2 x + C 4 sin 22x

t f 4
-K2+\_K +4fl 4

_a= 2

(14)

(15)

and

Preload

Axas of axis -_\/_0/

deflected __

beam -\ P ...,_1_Direction \ /'-"" _"" W /
\ ....-.-" .t v 01 /of load --_ ._-_ .---_"" ._.-- _ PD

__. ''j
",

\- Axis of undeflected beam

Note: For a small lateral deflection 01 = 0 = tan (0) -- sln (0)

Figure 4.--Deflected shape of the preloaded beam centedine.

the free end is required. Figure 4 shows the mast as loaded; in

this figure, PD is a component of preload whose magnitude

can be determined as follows:

and

V(L)
tan O -= (19)

L-t5

PD = P sin O (20)

Note that when the mast is deflected, its length is shortened

by somc magnitude 6.

For a small deflection, O -- tan O -- sin O; therefore

PD : P sin O_= PO = P V(L) (21)
L-6

tK2 vIK4 + 4fl 4

';1"2= _ + 2
(16)

The constants Ca to C 4 can be determined from the bound-

ary conditions and the initial condition.

At the fixed end of the mast, the displacement and the

slope of the displacement are zero; thus the first two bound-

ary conditions are

v(O) = 0 (17)

_,:,, = o (18)

Because the boundary condition at the free end, where the

tip mass is placed, is more complex, a free-body diagram of

MTV(L)

Q(L)

PD

Figure 5.--Free-body diagram at free
end of the preloaded beam.



where 8 is the axial deflection whose magnitude is influenced

by the axial preload. Its magnitude (ref. 3) is

PL
a =-- (22)

EA

Substituting equation (22) into (21) gives

PD -- P V(L)
PL

L---

EA

(23)

Figure 5 depicts the free-body diagram at the mast's free
end. To eliminate the time function, the terms from equa-

tions (8) and (9) should be substituted for the terms in this

free-body diagram. Summing the forces and moments at the
mast free end results in

Pv(L)
Mrcoav(L) = 0 (24)Q(L) _ PL

L---

EA

and

-El d2v
M(L)- cs dx 2 ,=e =0 (25)

Note that since the direction of the preload always remains
towards the mast fixed end, the moment caused by the pre-

load about the mast fixed end is zero.

If the mast is tall and flexible so that EA >> PL, then

equation (24) can be simplified to

Q(L)+ Pv(L) MTCO2v(L) = 0 (26)
L

Therefore, equations (25) and (26) are the boundary condi-
tions to be used at the mast free end. Using the first two

boundary conditions (eqs. (17)and (18))results in

C3 =- C! (27)

and

c4 =-a'c2 (28)
22222

Employing the third condition (eq. (26)) and equation (6)

gives

C,[ (2222_+ 2222,A,_ )sinh 2222lL+ ()_2 + 22222- ;t3)sin 22222L

+ K 2 (cosh)_1L - cos ,_aL)

+C2[ (,_ + 222212222_)cosh all

+(-22222222212+ _3_ al a2 L
"_2] '_'2 cos

(29)

where

MT¢.O2 - P__

K2 = L (30)
EIcs

Note that the following relations, which can easily be

checked, simplify equation (29): ala2=fl2; 22222+K2=fL2;and

a_ - K 2= a_. Thus equation (29) becomes

Cl[/t, a22 sinh alL- 22221222222sin a2L + K2 (cosh &IL -cos 2,2L)]

+c2[ 2222,22a cosh ;t,t + 22223 cos22222t

22221sinh 22222L) ] = 0+K 2 sinh 22221L-22227

(31)

Employing the fourth condition (eq. (25)) results in

Cl(a 2 cosh alL + 3.2 cos a2L )

+C2(_12 sinh alL+alA 2 sin A2L)=0 (32)



Table I. - Parameters Which Define the

Idealized Solar Array Structure

[rcf. 41

Length, in .......................... 1146

Width, in ........................... 38(1

Beam EI, v, psi ................... 2.85x 1(In

Beam, psi ....................... 6.9x 10"

Beam weight, Ib .................... 286.5

Blanket weight, Ib .................... 766

Tip weight, Ib ........................ 67

Tip inertia, lb-in? ................ 8.06x10 _

Equaiions (31) and (32) represent an eigenvalue problem.

The determinant of C1 and C2 must be zero, and this con-

dition establishes the characteristics equation (having an
infinite number of roots) that determines the characteristic

number or frequency value. Setting the determinant of equa-

tions (31) and (32) to zero gives

Solving equation (29) for C2 and substituting that into equa-

tion (34) yields

v=CI[

(cosh 2ix -cos 22x )

_[ 2122 sinh 21L - 2222 sin A2L + K2(cosh AlL-cos22L)
21,71._ cosh AlL + 23 cos 22L + K2(sinh AlL -

21 sin 22L ]
22 )

2_J6 -K2/34 sinh AlL sin/1.2 L

+,2(,,,+2,,)co , cos +

x(,71q cosh &l L sin &2L - &2 sinh XIL cos 22L) = 0

(35)

(33)

Equation (33) is similar to the eigen condition derived in
reference 2, with some minor differences in definition of

parameters. Note that all parameters in equation (33) are func-

tions of w, and employing the constants from table I will result

in a highly nonlinear equation with an infinite number of roots.

Mode Shapes

To determine the mode shapes, the constants C1 to C4

should be evaluated and substituted into equation (14). The

boundary conditions of the mast can provide the necessary
information to evaluate any set of three constants, but the last

constant can be evaluated only with the initial condition. Since

we are interested in the mode shapes at any instant of time and

since the last constant can have any value, depending on the

initial condition, an arbitrary value of 1.0 for the last constant

is assumed in this study.

Substituting equations (27) and (28) into equation (14)
results in

Equation (35) is the equation of motion for individual circular

frequencies. When a circular frequency obtained from equation

(33) is substituted into equation (35), the mode shape for that

particular frequency can be determined. Note that, as stated

previously, the value for C1 is assumed to be 1.0 prior to mode

shapes determination.

When the mast is excited, it will vibrate through all frequen-

cies; therefore its motion, which is the sum of all mode shapes,

can be expressed as

v= c. (co . x,.x- z2.x)
n=t

V=Cl(cOsh )_.lX-COSZ2x)+C2(sinh_lX-XlsinA2x/22

(34)

(36)



wherethesubscriptn refers to the nth circular frequency.

Again, it should be emphasized that equation (36) is the

mode shape at any instant of time; to obtain the mode shape
as function of the mast length and time, use equations (8) and

(9), which yield

_lnX -- COS ,_2n X)

2 2 sin 22nL + K2 (cosh)_+,,L - cos )_2,,L)

21n_.2n sinh ._InL - _.ln),.2. ]

_.lnk22n cosh /].I,,L + ._31nCos g2nL + K2/sinh ,_I+L ---sin ;L2,,L//
t _:. )J

x/sinh _lnx - _'2n_l"lsin _3.x 1
sin toj (37)

where Cn is obtained by using the initial condition.

Finite Element Approach

Since the normal mode solution of MSC/NASTRAN

(Version 65c) does not have the capability of predicting the

normal modes of a preloaded structure in one computer run,

the general solution was divided into two separate runs. First
the stiffness matrix of the preloaded mast was generated by

using the geometric nonlinearity of solution 64 of MSC/

NASTRAN, and then the superelement normal mode,

solution 63, was used to determine the modes.

V i_,._,.t X Sharednode --_

_Node 100 Stnglebeam element--_ _

I

_1 5 10 15 20 25 30 35 40\\45 50

Nodenumbers on preloaded beam (mast)-_,.-\
_- Mast

Rgure 6.--A representationof the finiteelement model of the
preloaded beam. Note: The mast and singlebeamelement
are physicallyat the same location,but In thisfigurethey have
been shownseparately to emphasize the physics of loading.
Node 50 is a shared node witha hinge.

constraining all the nodes in the z-direction. Node 1, which

represents the fixed end of the mast, is constrained in all
directions.

To generate the preload on the mast, and yet force the

direction of the preload to remain towards the fixed end of
the mast, a single BEAM element with a very large stiffness

was generated, running the entire length of mast. The single
BEAM element shares node 50 with the mast. The large stiff-

ness of the single BEAM element ensures that no mode cou-

pling will occur between the mast and the single BEAM
element. The node at the other end of the single BEAM ele-

ment is node 100, which has been located 0.094 in. above

node 1, in the positive x-direction. The reason for this offset

is that when a preload (see table I) is applied to the mast,

because of the axial flexibility of the mast, the entire assem-

bly will deform by 0.094 in. towards the negative x-direction.
To enforce the motion of node 100 in the direction of the

preload, a constraint in the v-direction was applied to this
node. In addition, to eliminate the bending action between the

single BEAM element and the mast, a hinge was placed at
node 50.

Finally, the database containing the preloaded stiffness
matrix of the mast was used in solution 63 to obtain the circu-

lar frequencies. The Generalized Dynamic Reduction tech-

nique was used to extract the circular frequencies.

Static Nonlinear and Normal

Mode Solutions

The finite element model of the mast, shown in figure 6+ is

approximately a i00 degree-of-freedom model, Whi(:h Con-
tains BEAM elements. BEAM etcments are twq:noded

elements with the capability of deforming axially, laterally,

and torsionally. For this study the torsional deformation capa-

bility of the finite element model was eliminated by con-

straining all the nodes from rotating about the x-direction.

Also the model was forced to bend in only one direction by

Results

A Fortran program was developed to solve equation (33)

for circular frequencies by using the Newton method. The

circular frequencies from the Fortran program and the finite
element model of the mast are shown in tables II to IV. In
these tables the values for the mass moment of inertia and the

preload vary from zero to their maximum values. The circular

frequencies from equation (33) and from the finite element
model of the mast are nearly identical at each mode; thus the

Fortran program was verified for accuracy.



Table II. - Comparison of Frequencies

Obtained From MSC/NASTRAN

and Equation (33) With

I = 0 in. 4 and P = 0

[M, = 67 Ib]

Modes Frequency, Hz

MSC/NASTRAN Equation (33)

First t.27 1.27

Second 9.07 9.07

Third 26.86 26.87

Table lll.-Comparison of Frequencies

Obtained From MSC/NASTRAN

and Equation (33) With

l=OinJandP= 1501b

[My = 67 Ib]

Modes Frequency, Hz

MSC/NASTRAN Equation (33)

1.25 1.25

8.88 8.90

26.44 26.71

First

Second

Third

Table IV. -- Comparison of Frequencies

Obtained From MSC/NASTRAN

and Equation (33) With

l= 38 in/ and P = 1501b

[M_ = 67 Ib]

Modes Frequency, Hz

MSC/NASTRAN Equation (33)

1.25 1.25

8.88 8.90

26.44 26.67

First

Second

Third
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Figure 7.--Frequency differences from table V as a
function of mode number.

Table V. - Comparison of Frequencies

Obtained From Equation (33) for Two

Cases: I = 0, and 1 = 38 inJ

[P=1501bandMj=671b I

Mode

number I = 38 in)

Frequency, Hz

1 1.2455

2 8.8963

3 26.6714

4 54.1339

5 91.3582

6 138.2606

7 194.7165

8 160.5686

9 335.6321

l0 419.6985

I = 0 in. 4 Difference

1.2455 0

8.9005 .0042

26.7064 .0350

54.2774 .1435

91.7687 .4105

139.2063 .9457

196.603 1.8865

263.9654 3.3968

341.2965 5.6644

428.5986 8.9001

To determine the influence of the mast mass moment of in-

ertia on circular frequencies, the first 10 circular frequencies
were extracted and tabulated in table V for 2 mass moments

of inertia input to the Fortran program, namely, I = 0 in? and
I = 38 in. 4 The differences between these circular frequencies

are shown in table V and plotted in figure 7; note that as the

mode number increases, the influence of the mast mass

moment of inertia becomes more apparent. The relationship

between the mode number and the frequency difference in

figure 7 appears to be that of a second order polynomial.

MSC/NASTRAN was not included in the study performed

for table V, since for higher frequencies the mast finite ele-

ment model demands higher fidelity. This model will need to
be further refined.

To incorporate the influence of the mass moment of inertia
into the finite element model of the mast, the following meth-

ods were investigated: (1) the mass moment of inertia of
each BEAM element of the mast was calculated and applied

to the BEAM property card as the nonstructural mass
moment of inertia; and (2) the mass moments of inertia of the

BEAM elements (calculated in step 1) were applied to con-

centrated mass elements (CONM2), and these elements were

placed on nodes 1 to 50. As expected, the circular frequencies
from the finite element model of the mast were not affected at

all, because the influence of the mass moment of inertia has
not been included in the Euler beam formulation.

For a cantilevered beam such as the structure of the mast,

where most of modal energy is stored in its first few modes, it

is crucial to predict the first few circular frequencies accu-

rately. The reason for this is that the dynamic loads are gener-

ally propgrtional to the inverse of the circ:ular frequencies. A s
can be observed in tables II and IV, the frequencies obtained

from MSC/NASTRAN are accurate. However as the demand

for higher circular frequencies grows, MSC/NASTRAN
becomes less accurate.



Conclusions

From the work reported herein, the following conclusions

may be drawn:
1. Equation (33) is the eigen condition for the characteris-

tic equation of the preloaded mast with a tip mass whose
infinite number of roots are the circular frequencies of the

structure.

2. According to our formulations and analyses, MSC/

NASTRAN is accurate for predicting the bending circular

frequencies of masts as long as the influence of the mass
moment of inertia of the beam is small.

Lewis Research Center

National Aeronautics and Space Administration

Cleveland, Ohio, February 3, 1992
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