58 research outputs found

    Direct Evidence of Internalization of Tau by Microglia in Vitro and in Vivo

    Get PDF
    The microtubule-associated protein (MAP) tau plays a critical role in the pathogenesis of tauopathies. Excess tau can be released into the extracellular medium in a physiological or pathological manner to be internalized by surrounding neurons' a process that contributes to the spread of this protein throughout the brain. Such spreading may correlate with the progression of the abovementioned diseases. In addition to neurons, tau can be internalized into other cells. Here we demonstrate that microglia take up tau in vitro and in vivo. In this regard, microglia from primary cultures internalized soluble (human recombinant tau42) and insoluble (homogenates derived from human AD brain) tau in vitro. Furthermore, using stereotaxic injection of tau in mice in vivo, we show that murine microglia internalize human tau. In addition, we demonstrate, for the first time, that microglia colocalize with various forms of tau in postmortem brain tissue of patients with Alzheimer's disease and non-demented control subjects. Our data reveal a potential role of microglia in the internalization of tau that might be relevant for the design of strategies to enhance the clearance of extracellular tau in neurodegenerative diseases characterized by the accumulation of this protein.Spanish Ministry of Health, the Comunidad de Madrid, the Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), and the Alzheimer’s Association.Peer Reviewe

    Comparison of melting frost layers after 2 frozen methods in pork cuts (longissimus dorsi)

    Get PDF
    AbstractThe frost formation and fusion of ice crystal on complex materials have a great importance, since they modify quality meat characteristics. Furthermore, changes take place in fiber morphology by formation of ice crystal during freezing. The aim of this work was to measure the frost formation and melting. Morphological frost difference was found, and the fusion times were different too. All the results can be useful to complement and understand the complex thermal processes with phase change at low temperatures. This study implicates thermal and mass concepts; they explain the frost formation and the melting process as an opposing phenomenon

    Enclosure acoustics considerations for the study of the effect of noise on fish

    Get PDF
    Comunicación presentada en el 54º Congreso Español de Acústica – TECNIACÚSTICA 2023, Cuenca, 18-20 de octubre de 2023.El estudio del comportamiento de los peces resulta extremadamente complicado en un entorno de libertad, especialmente si hablamos de su exposición a diferentes fuentes sonoras. Por este motivo, de las investigaciones en marcha son llevadas a cabo en el seno de un laboratorio, bien en peceras o bien en tanques, teniendo así un entorno controlado donde monitorizar continuamente el comportamiento de las muestras. Sin embargo, un recinto confinado difiere considerablemente de un espacio abierto. Mientras que un pez en libertad estará sometido por norma general a un campo sonoro libre, cuando hablamos de un recinto cerrado las condiciones cambian notablemente.Studying the behaviour of fish is extremely difficult in a free environment, especially when it comes to their exposure to different sound sources. For this reason, existing research is carried out in a laboratory, either in fish tanks or in tanks, thus having a controlled environment in which the behaviour of the samples can be continuously monitored. However, a confined enclosure differs considerably from an open space. While a fish in the wild will generally be subjected to a free sound field, when we talk about an enclosed area the conditions change markedly.This research was financed by the European Union Next Generation EU and FEDER funds under the projects PCI2022-135081-2 and PID2021-127426OB-C22 of the Ministry of Science and Innovation of Spain, respectively

    Empirical characterization of the indoor radio channel for array antenna systems in the 3 to 4 GHz frequency band

    Get PDF
    Concerning the design and planning of new radio interfaces for the fifth-generation (5G) systems, this paper presents a useful contribution to the characterization of the wideband indoor radio channel in the 3-4-GHz frequency band. A measurement campaign has been carried out in two different indoor scenarios to analyze some of the most important wideband parameters of the propagation channel, including a thorough analysis of its behavior to meet the new radio technology challenges. The channel measurement setup consists of a virtual vertical uniform array at the receiver side of the link that remains at a fixed position, whereas the transmitter side, which is equipped with a single antenna, is placed at different positions in the environment under analysis. The measurement setup emulates the up-link of a multi-user multiple-input multiple-output (MIMO) system and allows obtaining the broadband parameters of the multiple channels that are established between the transmitter and each one of the antennas of the receiver array. The results and conclusions about the path loss, temporal dispersion, and coherence bandwidth are included, along with an analysis of the spatial correlation between wideband channels when one of the antennas is an array.This work was supported by the Spanish Ministerio de Economía, Industria y Competitividad under Project TEC2017-86779-C2-1-R and Project TEC2017-86779-C2-2-R

    Influence of the Surface Chemistry of Metal-Organic Polyhedra in Their Assembly into Ultrathin Films for Gas Separation

    Get PDF
    The formation of ultrathin films of Rh-based porous metal-organic polyhedra (Rh-MOPs) by the Langmuir-Blodgett method has been explored. Homogeneous and dense monolayer films were formed at the air-water interface either using two different coordinatively alkyl-functionalized Rh-MOPs (HRhMOP(diz)12 and HRhMOP(oiz)12) or by in situ incorporation of aliphatic chains to the axial sites of dirhodium paddlewheels of another Rh-MOP (OHRhMOP) at the air-liquid interface. All these Rh-MOP monolayers were successively deposited onto different substrates in order to obtain multilayer films with controllable thicknesses. Aliphatic chains were partially removed from HRhMOP(diz)12 films post-synthetically by a simple acid treatment, resulting in a relevant modification of the film hydrophobicity. Moreover, the CO2/N2 separation performance of Rh-MOP-supported membranes was also evaluated, proving that they can be used as selective layers for efficient CO2 separation. © 2022 The Authors. Published by American Chemical Society

    Análisis experimental de un canal massive MIMO en una picocelda de interior

    Full text link
    [EN] This paper presents an analysis of the massive MIMO channel in an indoor picocell. The analysis is based on the results of a measurement campaign carried out in the 3.2 to 4 GHz band in a scenario of reduced size and with a symmetrical geometry. It is well known that the performance of massive MIMO systems depends largely on the fact that the radio channel meets the condition of favorable propagation. In order to evaluate the performance of the resulting massive MIMO channel, results concerning the sum capacity are included. A second factor that determines the performance of massive MIMO systems when it is operated in a TDD-OFDM framework is the frequency selectivity of the channel that limits the size of the coherence block. In this sense, results of the coherence bandwidths achieved are also presented and analyzed.Este trabajo ha sido financiado por los proyectos del Plan Estatal de Investigación Científica y Técnica y de Innovación TEC2017-86779-C2-1-R y TEC2017-86779-C2-2-R.Torres, RP.; Pérez, JR.; Basterrechea, J.; Valle, L.; Domingo, M.; Rubio Arjona, L.; Rodrigo Peñarrocha, VM.... (2020). Análisis experimental de un canal massive MIMO en una picocelda de interior. Universidad de Málaga. 1-4. http://hdl.handle.net/10251/178585S1

    Millimeter-wave channel measurements and path loss characterization in a typical indoor office environment

    Get PDF
    In this paper, a path loss characterization at millimeter-wave (mmWave) frequencies is performed in a typical indoor office environment. Path loss results were derived from propagation channel measurements collected in the 25–40 GHz frequency band, in both line-of-sight (LOS) and obstructed-LOS (OLOS) propagation conditions. The channel measurements were performed using a frequency-domain channel sounder, which integrates an amplified radio over fiber (RoF) link to avoid the high losses at mmWave. The path loss was analyzed in the 26 GHz, 28 GHz, 33 GHz and 38 GHz frequency bands through the close-in free space reference distance (CI) and the floating-intercept (FI) models. These models take into account the distance dependence of the path loss for a single frequency. Nevertheless, to jointly study the distance and frequency dependence of the path loss, multi-frequency models were considered. The parameters of the ABG (A-alpha, B-beta and G-gamma) and the close-in free space reference distance with frequency path loss exponent (CIF) models were derived from the channel measurements in the whole 25–40 GHz band under the minimum mean square error (MMSE) approach. The results show that, in general, there is some relationship between the model parameters and the frequency. Path loss exponent (PLE) values smaller than the theoretical free space propagation were obtained, showing that there are a waveguide effect and a constructive interference of multipath components (MPCs). Since the measurements were obtained in the same environment and with the same configuration and measurement setup, it is possible to establish realistic comparisons between the model parameters and the propagation behavior at the different frequencies considered. The results provided here allow us to have a better knowledge of the propagation at mmWave frequencies and may be of interest to other researchers in the simulation and performance evaluation of future wireless communication systems in indoor hotspot environments.This work has been funded in part by the MCIN/AEI/10.13039/501100011033/ through the I+D+i Project under Grant PID2020-119173RB-C21 and Grant PID2020-119173RB-C22, and by COLCIENCIAS in Colombia

    Influence of the surface chemistry of metal-organic polyhedra in their assembly into ultrathin films for gas separation

    Get PDF
    The formation of ultrathin films of Rh-based porous metal–organic polyhedra (Rh-MOPs) by the Langmuir–Blodgett method has been explored. Homogeneous and dense monolayer films were formed at the air–water interface either using two different coordinatively alkyl-functionalized Rh-MOPs (HRhMOP(diz)12 and HRhMOP(oiz)12) or by in situ incorporation of aliphatic chains to the axial sites of dirhodium paddlewheels of another Rh-MOP (OHRhMOP) at the air–liquid interface. All these Rh-MOP monolayers were successively deposited onto different substrates in order to obtain multilayer films with controllable thicknesses. Aliphatic chains were partially removed from HRhMOP(diz)12 films post-synthetically by a simple acid treatment, resulting in a relevant modification of the film hydrophobicity. Moreover, the CO2/N2 separation performance of Rh-MOP-supported membranes was also evaluated, proving that they can be used as selective layers for efficient CO2 separation.This work was funded by MCIN/AEI/10.13039/501100011033 and ERDF “A way of making Europe” (grant PID2019-105881RB-I00). The authors also acknowledge the support from the Spanish MINECO (project RTI2018-095622-B-I00) and the Catalan AGAUR (project 2017 SGR 238). It was also funded by the CERCA Programme/Generalitat de Catalunya and through a fellowship (LCF/BQ/PR20/11770011) from “la Caixa” Foundation (ID 100010434). ICN2 is supported by the Severo Ochoa programme from the Spanish MINECO (grant no. SEV-2017-0706). I.T. and M.P.-M. gratefully acknowledge their DGA PhD fellowship from Government of Aragon. The microscopy work was carried out in the Laboratorio de Microscopias Avanzadas at the Instituto de Nanociencia y Materiales de Aragon (LMA-INMA). This work benefited from the use of the SasView application, originally developed under NSF award DMR-0520547. SasView contains code developed with funding from the European Union’s Horizon 2020 research and innovation programme under the SINE2020 project, grant agreement no. 654000. The authors thank the synchrotron SOLEIL for beamtime provision under projects 20190435 and 20191874.Peer reviewe

    Supporting information for the manuscript Influence of the Surface Chemistry of Metal–Organic Polyhedra in Their Assembly into Ultrathin Films for Gas Separation

    Get PDF
    19 pages. -- Figure S1. Absorption spectra (450-650 nm range) of OHRhMOP dissolved in methanol/chloroform (1:5) and the product formed after the addition of ca. 3.8×10- 3 mmol of diz to a dispersion of ca. 1.5×10-4 mmol OHRhMOP in 2 mL of THF. The maximum absorption at ca. 552 nm after diz addition indicates that all the dirhodium paddlewheels of OHRhMOP are coordinated to one diz, obtaining OHRhMOP(diz)12. -- Figure S2. Raw GIXD data for C12RhMOP (left), HRhMOP(diz)12 (middle) and OHRhMOP (right), at the indicated pressures. The water subphase data are shown as grey lines. Insets highlight the q range exhibiting the Bragg peak of alkyl chains ordering, in the case of C12RhMOP and HRhMOP(diz)12. -- Figure S3. Top: high q portion of GIXD data for C12RhMOP (left, collapsed) and HRhMOP(diz)12 (right, 10 mN/m), integrated over only the bottom half, top half, bottom first quarter or the whole detector, as indicated. The Bragg peak at ca. 1.51 Å-1 characteristic of alkyl chain interdigitation/order is not present in the data at higher qz. Bottom: intensity of the alkyl chains Bragg rod vs. qz, C12RhMOP. -- Figure S4. GIXD data for OHRhMOP at the gas-water interface at 10 mN/m, after correction for the water subphase. The red line is the diffusion form factor of coreshell spheres with an empty (SLD = 0) core of 5 Å radius and a dense shell of 11.5 Å thickness (SLD = 2x10-6 Å-2), considering a pinhole instrumental smearing dQ/Q of 5 %, that can only account for the two stronger peaks at 0.63 and 0.87 Å–1. (left), HRhMOP(diz)12 (right) at 10 mN/m. -- Scheme S1. LS sequential deposition of MOP monolayers onto PTMSP supports. One MOP monolayer is deposited each time that the support contacts the film formed at the air-liquid interface. After each transfer, the film is dried with N2 at ambient temperature and the transference is repeated as many times as necessary to obtain films with the desired number of Rh-MOP monolayers. -- Figure S5. UV-Vis spectra for the three Rh-MOPs studied. Solution spectra and LS films deposited onto quartz substrates are compared for each Rh-MOP. -- Figure S6. Representative AFM topography images from HRhMOP(oiz)12 and HRhMOP(diz)12 LS films transferred onto quartz substrates at 20 mN/m used to evaluate the film thickness. -- Figure S7. Representative AFM topography image of quartz, left, and a Si(100), right, substrates before MOP film deposition. -- Figure S8. Representative AFM topography and phase images from a OHRhMOP LS film transferred at 2 mN/m and evaluation of film thickness and defects dimensions. -- Figure S9. Linear increase of the absorbance at 214 nm vs. the number of Rh- MOP LS layers transferred at 20 mN/m onto quartz substrates (● HRhMOP(oiz)12;■: HRhMOP(diz)12). -- Figure S10. Rh-MOP mass deposited onto QCM disks at 20 mN/m versus the number of LS layers transferred (■: C12RhMOP;▲: HRhMOP(oiz)12, ●: HRhMOP(diz)12). -- Figure S11. Brewster Angle Microscope (BAM) images obtained during OHRhMOP + diz film compression at indicated surface pressures and the corresponding areas per molecule. OHRhMOP + diz different ratios were used in the experiments (1:25 in top images, and 1:50 in bottom images, respectively). -- Figure S12. Characterization of the films obtained from OHRhMOP + diz (1:25) reaction at the air-liquid interface: a) UV-Vis spectra from sequential deposition of LS films transferred onto quartz at 20 mN/m. Inset: Linear increase of the absorbance at 221nm vs. the number of LS layers transferred. b) Mass deposited onto QCM disks vs. the number of LS layers transferred (red line: OHRhMOP +diz; blue line: HRhMOP(diz)12, green line: C12RhMOP). -- Figure S13: UV-Vis spectra from HRhMOP(diz)12 LS films deposited onto quartz at 20 mN/m before and after the acid treatment: 1 layer (continuous line) and 3 layers (dashed line). -- Figure S14. Representative AFM topography and phase images from a HRhMOP(diz)12 LS film (1 layer) deposited onto Si (100) before and after acid treatment with HCl vapors. -- Table S1: Parameters of the components used to simulate the Rh 3d high resolution XPS spectra (see Figure 9) of OHRhMOP (powder), 1 LS film deposited at 20 mN/m after OHRhMOP + diz (1:25) reaction at the air-liquid interface and drop-cast film obtained after OHRhMOP + diz (1:25) reaction in THF. -- Table S2: Comparison of the performance of MOP and PIM ultrathin films (30 LS monolayers deposited onto PTMSP membranes) in CO2/N2 (10/90 in volume) separation at 35 ºC. At least 2 different samples were fabricated and measured to provide the corresponding error estimations.The formation of ultrathin films of Rh-based porous metal–organic polyhedra (Rh-MOPs) by the Langmuir–Blodgett method has been explored. Homogeneous and dense monolayer films were formed at the air–water interface either using two different coordinatively alkyl-functionalized Rh-MOPs (HRhMOP­(diz)12 and HRhMOP­(oiz)12) or by in situ incorporation of aliphatic chains to the axial sites of dirhodium paddlewheels of another Rh-MOP (OHRhMOP) at the air–liquid interface. All these Rh-MOP monolayers were successively deposited onto different substrates in order to obtain multilayer films with controllable thicknesses. Aliphatic chains were partially removed from HRhMOP­(diz)12 films post-synthetically by a simple acid treatment, resulting in a relevant modification of the film hydrophobicity. Moreover, the CO2/N2 separation performance of Rh-MOP-supported membranes was also evaluated, proving that they can be used as selective layers for efficient CO2 separation.Peer reviewe

    Intracellular Mechanical Drugs Induce Cell-Cycle Altering and Cell Death

    Get PDF
    Current advances in materials science have demonstrated that extracellular mechanical cues can define cell function and cell fate. However, a fundamental understanding of the manner in which intracellular mechanical cues affect cell mechanics remains elusive. How intracellular mechanical hindrance, reinforcement, and supports interfere with the cell cycle and promote cell death is described here. Reproducible devices with highly controlled size, shape, and with a broad range of stiffness are internalized in HeLa cells. Once inside, they induce characteristic cell-cycle deviations and promote cell death. Device shape and stiffness are the dominant determinants of mechanical impairment. Device structural support to the cell membrane and centering during mitosis maximize their effects, preventing spindle centering, and correct chromosome alignment. Nanodevices reveal that the spindle generates forces larger than 114 nN which overcomes intracellular confinement by relocating the device to a less damaging position. By using intracellular mechanical drugs, this work provides a foundation to defining the role of intracellular constraints on cell function and fate, with relevance to fundamental cell mechanics and nanomedicine.Peer reviewe
    corecore