116 research outputs found

    Water Governing Systems: addressing conflicts between hydrological and institutional scales

    Get PDF
    The human-generated systems typically meet biophysical ones within different geographical terrains. The space where those systems face each other is framed at the human-crafted and natural scales. Conventionally such sphere is a contestation field where various levels of contributing scales confront to embed a functional system. The water governing systems are as of the frequently debated of such systems. They resemble controversial evidence in the course of conflicts between hydrological and administrative/institutional scales. Indeed, due to the dominancy of human-determined objectives to the environmental requirements, the water governing systems have not considered reasonably the requisite of natural cycles in many areas. This issue produces externalities and mismatches between human-formulated and hydrological systems. To enhance the governance, there is a need to detect problems which arise from unfit of those systems in associated levels. Therefore, an inferential methodology which is able to capture and project the water (demand/supply) governing system state is being developed. The methodology encompasses incorporation of a system cost formulation approach. Besides, the system status in relation to microscopic configurations of its components is appraised through the method. This inscribed that a unique macroscopic state driven by a certain configuration is reflectable as a cost system bears in respect to its structure. Such cost is a theoretical estimate to measure the impact of a confiscated structure on the effectiveness of governing system. Correspondingly, the induced inefficiencies by the misfit between human-designed and biophysical systems are diagnosable through the comparison of system costs associated to pertinent structures/configurations

    The Laboratory-Based Intermountain Validated Exacerbation (LIVE) Score Identifies Chronic Obstructive Pulmonary Disease Patients at High Mortality Risk.

    Get PDF
    Background: Identifying COPD patients at high risk for mortality or healthcare utilization remains a challenge. A robust system for identifying high-risk COPD patients using Electronic Health Record (EHR) data would empower targeting interventions aimed at ensuring guideline compliance and multimorbidity management. The purpose of this study was to empirically derive, validate, and characterize subgroups of COPD patients based on routinely collected clinical data widely available within the EHR. Methods: Cluster analysis was used in 5,006 patients with COPD at Intermountain to identify clusters based on a large collection of clinical variables. Recursive Partitioning (RP) was then used to determine a preferred tree that assigned patients to clusters based on a parsimonious variable subset. The mortality, COPD exacerbations, and comorbidity profile of the identified groups were examined. The findings were validated in an independent Intermountain cohort and in external cohorts from the United States Veterans Affairs (VA) and University of Chicago Medicine systems. Measurements and Main Results: The RP algorithm identified five LIVE Scores based on laboratory values: albumin, creatinine, chloride, potassium, and hemoglobin. The groups were characterized by increasing risk of mortality. The lowest risk, LIVE Score 5 had 8% 4-year mortality vs. 56% in the highest risk LIVE Score 1 (p < 0.001). These findings were validated in the VA cohort (n = 83,134), an expanded Intermountain cohort (n = 48,871) and in the University of Chicago system (n = 3,236). Higher mortality groups also had higher COPD exacerbation rates and comorbidity rates. Conclusions: In large clinical datasets across different organizations, the LIVE Score utilizes existing laboratory data for COPD patients, and may be used to stratify risk for mortality and COPD exacerbations

    Vertical fit of water governing systems: A regional assessment

    Get PDF
    To promote environmentally sustainable water governance, this study emphasizes the necessity of aligning institutional structures with ecological scales. The research focused on the Urmia Lake Basin in Iran facing the serious problem of drying up. Beyond the political and economic determinants shaping the water governance system in the region, the study evaluated the effect of Urmia Lake Restoration Program (ULRP), an environmental movement, on the basin's water governance structure. Employing statistical mechanics methods to scrutinize Hamiltonian system costs related to administrative interactions for water supply-demand, the study assessed the structural fit of the water governance system to the basin across distinct stages: without- and with-including the ULRP. Results revealed diminished costs following ULRP involvement, notably in entities with higher water demands, head offices and the system overall, further improved by water-saving measures. These findings highlighted the efficacy of vertical (re)arrangements and structural reform through ULRP incorporation in enhancing system fit, stressing the significance of its water-saving policy. The methodology provides a fast and explicit scan of the system structure, demonstrating its ability to project the effect of institutional reforms on the system state. Serving as a constructive tool for policymakers, it facilitates rapid, efficient and informed decision-making in water governance. Furthermore, following the UN SDG 6, this framework supports integrated water resources management (IWRM) across sectors and regions, particularly targeting water-stressed contexts

    Performance comparison of the floating and fully submerged quasi-point absorber wave energy converters

    Get PDF
    Available online 3 March 2017Axisymmetric point absorbers are mostly designed as floating buoys that extract power from heave motion. Power absorption limits of such wave energy converters (WECs) are governed by the displaced volume of the buoy and its ability to radiate waves. In the case of fully submerged WECs, the power performance becomes a function of additional variables including the proximity to the mean surface level of the water, body shape and the maximum stroke length of the power take-off system. Placing the body below the water surface increases its survivability in storm conditions but changes the hydrodynamic properties of the WEC including maximum absorbed power. This paper investigates the differences between floating and fully submerged point absorber converters from the number of perspectives including energy extraction, bandwidth, and optimal size for a particular wave climate. The results show that when compared with floating converters, fully submerged buoys: (i) generally absorb less power at longer wavelengths, (ii) have narrower bandwidth, (iii) cannot be replaced by smaller units of the same total volume without a significant loss of power, and (iv) have a significant advantage as they can effectively utilise several modes of motion (e.g. surge and heave) in order to increase power generation.N.Y. Sergiienko, B.S. Cazzolato, B. Ding, P. Hardy, M. Arjomand

    Physical, chemical and biological quality assessment of aqueduct (Qanat) water for drinking, agriculture and irrigation of urban green spaces

    Get PDF
    BACKGROUND AND OBJECTIVES: The aqueduct is one of the most complex and amazing inventions of human history, created to meet the most vital needs of human society in arid and semiarid regions areas. If aqueducts are properly maintained, reconstructed, and restored, they can be valuable water supply system from ground water resources. The quality of the water in these sources will have a direct impact on the consumer of its consumption, so it seems necessary to check the water quality of these sources.METHODS: This study investigated the state of five aqueducts in Tehran using parameters such as calcium, magnesium, phosphate, sulfate, turbidity, total hardness, nitrate, alkalinity, electrical conductivity, Biochemical Oxygen Demand, Chemical Oxygen Demand, total coliform and fecal coliform. Then the obtained values were compared with the permissible limits of the World Health Organization and the national standard of Iran. The data was analyzed using SPSS26 software and a one-sample t-test.FINDINGS: The results of water quality during a one-year survey period showed that the parameters of alkalinity, electrical conductivity, total dissolved solids, sulfate, and nitrate were below the maximum desirable and permissible standards of the national standard of Iran and the World Health Organization, and therefore will not create any restrictions for drinking and agricultural use. Total hardness, phosphate, turbidity, calcium, magnesium, and chlorine have discrepancies with the national standards of Iran and the World Health Organization and these components must be adjusted for use. According to the one-sample t-test, there was a significant difference between the average and the permissible values of all parameters except magnesium at the 95% confidence level. All aqueducts except the America aqueduct had levels of fecal coliform that were higher than the maximum allowed by the environmental standards therefore, before using the aqueduct, it must be purified to control the environmental standards.. However, the total coliform, Biochemical Oxygen Demand, Chemical Oxygen Demand levels were not a problem. In addition, the water quality of these sources was placed in a group (C3S1) based on the Wilcox diagram.CONCLUSION: The physical and chemical analysis of the studied aqueduct water showed that the water quality is suitable for the irrigation of green spaces and salt-resistant plants. The biological characteristics of the studied aqueduct water also revealed that these sources were polluted by domestic and industrial effluents. This issue will only grow worse with time, as the amount of rainwater decreases and the amount of pollution in the underground water sources increases

    Spirometry reference equations for central European populations from school age to old age.

    Get PDF
    Spirometry reference values are important for the interpretation of spirometry results. Reference values should be updated regularly, derived from a population as similar to the population for which they are to be used and span across all ages. Such spirometry reference equations are currently lacking for central European populations. To develop spirometry reference equations for central European populations between 8 and 90 years of age. We used data collected between January 1993 and December 2010 from a central European population. The data was modelled using "Generalized Additive Models for Location, Scale and Shape" (GAMLSS). The spirometry reference equations were derived from 118'891 individuals consisting of 60'624 (51%) females and 58'267 (49%) males. Altogether, there were 18'211 (15.3%) children under the age of 18 years. We developed spirometry reference equations for a central European population between 8 and 90 years of age that can be implemented in a wide range of clinical settings

    Institutional Trust and Cognitive Motivation toward Water Conservation in the Face of an Environmental Disaster

    Get PDF
    The agricultural sector in general, and in Iran in particular, is a major consumer of water and now finds itself under significant pressure due to water deficiency. This study used the Protection Motivation Theory to detect reasons for the imprudent consumption of water in Iran and to further its conservation. The Theory was extended for particular application to a seriously affected water basin, the Urmia Lake Basin in Northwest Iran. The factors governing water-saving intention among farmers in the Basin were investigated. Three hundred farmers were selected through a multi-stage, clustered, random sampling method. The results of structural equation modeling illustrated that while the original model variables accounted for 58 of the variance in water-saving intention, this rate increased to 63 in the extended model when institutional trust was used as a variable. Whereas response efficacy showed itself to be the strongest determinant of water-saving intention, all factors except perceived severity were significant in both models. Furthermore, the results of a multi-group analysis revealed that the intention to adopt water conservation measures is commensurate with the distance from the water resource and proximity to the (drying) lake. The findings of the study are expected to provide important information for policymakers looking to tailor policies to work in extreme water deficiency cases like the Urmia Lake Basin

    Is there adaptation in the ozone mortality relationship: A multi-city case-crossover analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ozone has been associated with daily mortality, mainly in the summer period. Despite the ample literature on adaptation of inflammatory and pulmonary responses to ozone, and the link, in cohort studies, between lung function and mortality risk there has been little done to date to examine the question of adaptation in the acute mortality risk associated with ambient ozone.</p> <p>Methods</p> <p>We applied a case-crossover design in 48 US cities to examine the ozone effect by season, by month and by age groups, particularly focusing on whether there was an adaptation effect.</p> <p>Results</p> <p>We found that the same day ozone effect was highest in summer with a 0.5% (95% CI: 0.38, 0.62) increase in total mortality for 10 ppb increase in 8-hr ozone, whilst the effect decrease to null in autumn and winter. We found higher effects in the months May- July with a 0.46% (95% CI: 0.24, 0.68) increase in total mortality for 10 ppb increase in ozone in June, and a 0.65% (95% CI: 0.47, 0.82) increase in mortality during July. The effect decreased in August and became null in September. We found similar effects from the age group 51–60 up to age 80 and a lower effect in 80 years and older.</p> <p>Conclusion</p> <p>The mortality effects of ozone appear diminished later in the ozone season, reaching the null effect previously reported in winter by September. More work should address this issue and examine the biological mechanism of adaptation.</p
    corecore