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Performance comparison of the floating and fully submerged quasi-point absorber
wave energy converters

N.Y. Sergiienko**, B.S. Cazzolato?, B. Ding?, P. Hardy®, M. Arjomandi®

%The University of Adelaide, School of Mechanical Engineering, Adelaide, Australia

Abstract

Axisymmetric point absorbers are mostly designed as floating buoys that extract power from heave motion. Power
absorption limits of such wave energy converters (WECs) are governed by the displaced volume of the buoy and its
ability to radiate waves. In the case of fully submerged WECs, the power performance becomes a function of additional
variables including the proximity to the mean surface level of the water, body shape and the maximum stroke length
of the power take-off system. Placing the body below the water surface increases its survivability in storm conditions
but changes the hydrodynamic properties of the WEC including maximum absorbed power. This paper investigates the
differences between floating and fully submerged point absorber converters from the number of perspectives including
energy extraction, bandwidth, and optimal size for a particular wave climate. The results show that when compared
with floating converters, fully submerged buoys: (i) generally absorb less power at longer wavelengths, (ii) have narrower
bandwidth, (iii) cannot be replaced by smaller units of the same total volume without a significant loss of power, and
(iv) have a significant advantage as they can effectively utilise several modes of motion (e.g. surge and heave) in order
to increase power generation.

Keywords: Wave energy converter; Submerged point absorber; Floating point absorber; Power generation.

1. Introduction wave power generator, e.g. the buoy must not be

visible from the shore.
Intensive research on extraction energy from ocean

waves started in the 1970s [I]. Initially, attention was
paid to the terminator-type converters which were studied
as two-dimensional devices with an infinitely long body ex-
tension perpendicular to the wave front (e.g. Salter’s duck Full
[2]). However, due to the sensitivity of such prototypes submeryge d
to the direction of wave propagation, researchers focussed buoy
on the concept of a point-absorbing wave energy converter

(WEC) [3] whose performance does not depend on the

Floating buoy

Incident wave

angle of wave incidence. Thereafter, point absorbers (PA)
have become one of the most studied WECs, making up a
large part of existing full-scale prototypes.

Generally, PAs are designed to operate on or just below
the water surface, extracting wave power from the heaving
motion. As opposed to submerged buoys, floating convert-
ers require less installation and maintenance work under
water. However, there could be several very important
reasons to keep the WEC fully submerged (see Figure [1)):

(i) to increase the survivability of the converter during
storms with large wave conditions;

(ii) when there is an unconditional requirement from the
public authorities to minimise visual impact of the
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Figure 1: Schematic representation of the floating and fully sub-
merged WECs that extract energy from oscillations in heave.

Based on the fundamental equations of maximum
power absorption for axisymmetric bodies, floating and
submerged WECs are able to extract the same amount
of wave power provided unconstrained motion amplitudes
[3, [4]. Thus, under this condition the maximum capture
width of the oscillating body does not depend on its size,
shape or submergence depth, but is governed by the mode
of motion [5, [6]. According to these findings, the body
that moves in surge and heave simultaneously can absorb
three times more power than a heaving buoy.

In practice, WEC motion should be constrained dur-
ing large waves, hence power absorption becomes depend-
ent on the maximum allowed oscillation amplitude and
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the wave excitation force exerted on the converter [7] [§].
As the latter is determined by the shape, size and sub-
mergence depth of the WEC, it becomes apparent that
identical fully submerged and floating buoys cannot cap-
ture the same amount of wave energy. It has been observed
[1] that submerged converters are poorer wave absorbers
as compared to the floating heaving buoys because their
upper and lower portions of the swept volume have differ-
ent polarities during the oscillatory motion. In addition,
floating and fully submerged WECs have distinctive low-
frequency limits of the heave excitation forces. As the wave
frequency tends to zero, the amplitude of the heave force
on the floating body is limited by the hydrostatic stiffness
coeflicient, whereas for the fully submerged converter the
excitation force approaches zero due to the diminishing
water plane area [5]. Subsequently, based on these find-
ings and also taking into account the swept volume of the
body, Budal [9] was able to formulate power absorption
bounds for floating WECs that oscillate in heave. This
approach has been extended to the fully submerged buoys
where the expressions of the power limits for several basic
geometries are derived [10]. However, it may be concluded
that in the case of point-absorbing WECs, the main re-
search focus has been drawn to the floating buoys, while
some features of submerged converters still remain unclear
or have not been sufficiently explored.

The current paper provides a systematic comparison
between floating and submerged PAs by generalising ex-
isting knowledge and providing an in-depth analysis. All
results are based on the linear wave theory assuming regu-
lar and irregular wave conditions and infinite water depth.
Background information and power absorption limits of
heaving PA systems are presented in Section 2] Key fea-
tures of different control strategies are discussed in Sec-
tion |3 followed by the methods of selecting the correct
size of the converter in Sections Finally, the possib-
ility of extracting power from additional modes of motion
is reported in Section [6]

2. Power limits for regular waves

A body placed in water captures wave energy only
when it moves in an oscillatory manner and radiates waves
in order to counteract the incident wave front. Thus, the
maximum amount of power that can be removed from
waves is defined by the radiating ability of the body. This
limit has been derived in [3] [4) [T1] and differs for motion
modes. A well known equation characterising the max-
imum absorbed power by an axisymmetric body in mono-
chromatic waves is [5]:

Pmax = OZ%, (]-)
where J = pg?D(kh)A?/(4w) is the wave-energy transport
per unit frontage of the incident wave, « is a coefficient
that depends on the motion oscillation mode (o = 1 for

heave, o = 2 for surge or pitch, and @ = 3 when the

body oscillates in heave, surge and pitch simultaneously),
k is the wavenumber, A is the wave amplitude, p is water
density, w is the wave frequency and D(kh) is the depth
function which is equal to 1 for deep water.

Maximum power in Equation is obtained when the
body velocity is [5]:

o) = =), 2

where Fjwc is the wave excitation force on the body in
mode j, and Bj; is the radiation damping coefficient in
mode j. However, the amount of power in waves with
long period is very high and in order to absorb the absolute
maximum, the body should move with large amplitudes at
high velocities which is not achievable in practice. Thus,
if |4;| < |G ,0pt|, the amount of radiated power (P,) will
be much smaller than the excitation power (P.) and the
absorbed power will be limited by the latter:

1
P:PE_PTS?FJ}@M@J’L (3)

According to Equation (3), Budal (as cited in [I])
showed that the power extraction at low frequencies is lim-
ited by the swept volume of the body, which is a collective
term for the body physical volume and the maximum mo-
tion amplitude. Thus, for the floating body, the motion
amplitude in heave is constrained by its vertical dimension,
such that |33] < V/(2S,), where V is the body volume, S,,
is the water-plane area of the body, and the subscript j = 3
corresponds to the heave motion. Therefore, the maximum
velocity in heave cannot be larger than |3 < wV/(2Sy).
Furthermore, the heave excitation force is bounded by the
integrated pressure force over the water-plane area of the
body, which is |F37em| < pgSwA. As a result, the power
absorption of the floating heaving buoy has two boundar-
ies:

(i) a high-frequency limit P4 defined by the body’s abil-
ity to radiate waves (from Equation assuming
deep water conditions w? = kg):

Py = =c o T3H?,  (4)

4wk 4w3

_ T _ A _pg’ (5)
k

where co, = p(g/m)3/128, H = 2A is the wave height,
T = 27 /w is the wave period;

(ii) a low-frequency limit Pp defined by the maximum
swept volume of the body, which applies when the
velocity of the converter is smaller than the optimal
value due to physical constraints:

pgwVA  cVH
= 0

where ¢g = (7/4)pg and the subscript f corresponds
to the floating case.
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Pp = §|F3,eaccu3| =



v
—/

() (b) (c)

Figure 2: Schematic representation of the floating and submerged
spheres of radius a = 5 m: (a) ds = 0, (b) ds = 1.2a = 6 m and
(¢) ds =2a =10 m.
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Figure 3: Power absorbed by the floating and submerged spheres in
regular waves vs. wave period. Sphere radius is a = 5 m, displace-
ment in heave is constrained to 0.6a, wave height is H = 2 m. The
dashed curve corresponds to the P4 limit from Eq. , and three
dash-dotted curves show the Pg bounds from Egs. and @

These boundaries have been derived for floating bodies
that move in heave only regardless of shape. In general, the
P,4-limit depends only on the mode of motion and has the
same expression for submerged and floating bodies. With
regard to the Pg curve, the power absorption limit of the
fully submerged converter is strongly dependent on shape
and should be derived for each case under consideration
independently. Thus, for a spherical body with its centre
placed ds below the water surface, the Pg-limit can be
expressed as [10]:

Pg = 43 pe 5837maxﬁ, (6)

where the subscript s corresponds to the submerged case,
and $3 max is the maximum displacement of the sphere in
heave.

To demonstrate the comparison between power lim-
its for the floating and submerged WECs, three spher-
ical bodies with different submergence depths have been
chosen for the analysis as indicated in Figure All
spheres have the same physical volume of 524 m? (radius
is @ = 5 m) and the motion amplitudes are constrained
by s3max = 0.67a = 3.3 m. Regular waves of height
H =2 m are considered. Hydrodynamic coefficients of all

(a) (b) (c)

Figure 4: Schematic representation of the floating and submerged
truncated vertical cylinders, he = a = 5.5 m: (a) ds = 0, (b) ds =
0.5hc +1=10.68a =3.75 m, (¢) ds = hc +1=1.18a = 6.5 m.
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Figure 5: Power absorbed by the floating and submerged truncated
vertical cylinders in regular waves vs. wave period. Cylinder radius
and height are h. = a = 5.5 m, heave displacement is constrained
to 0.5h¢, wave height is H = 2 m. The dashed curve corresponds to
the P4 limit from Eq. (4], and three dash-dotted curves show the
Pp bounds from Egs. (5) and .

buoys have been obtained using WAMIT [I2]. It should
be noted that a sphere which is located in close proximity
to the mean water level (d; = 6 m) may breach the sur-
face of the water during operation. In this case, the linear
wave theory breaks down and thus provides only a rough
approximation of the wave-body interaction. Also, in this
work the wave parameters and dimensions of all WECs are
selected such that the Keulegan-Carpenter (K C') number
does not exceed m, thus avoiding excessive viscous losses
in the system and ensuring that linear potential theory is
considered valid [13].

The power extracted by the spherical WECs over the
range of wave periods, assuming optimal reactive control,
is displayed in Figure The most important difference
between power absorption of floating and submerged heav-
ing systems is that the latter has a faster decay rate at the
low frequency range. Comparing Equations and @,
it is obvious that Pg y = O(T~1), while Pg s = O(T79),
which leads to a decrease in power absorption at longer
wavelengths. Moreover, due to the fact that the hydro-
dynamic pressure on the body surface decays exponentially
with depth, the presence of exp(—kds) in Equation (@
shows a reduction of power for deeper submergences. Con-
sequently, the sphere submerged to 2a = 10 m extracts less



power than that submerged to 1.2a = 6 m. Whilst smaller
excitation forces from low-frequency waves increase surviv-
ability of the system under storm conditions it comes at
the expense of power generation.

The analysis will now be extended to cylindrical WECs
with volume of 524 m?, which is the same as for the spheres
considered. The height to radius ratio of each cylinder
is set to 1 leading to h. = a = 5.5 m. Three different
submergence depths are examined as shown in Figure [
one floating case, ds = 0, and two submerged cases with
ds = 0.5h. +1 = 0.68¢ = 3.75m and ds = h, +1 =
1.18a = 6.5 m. The volume stroke in heave is set to be
equal to the structural body volume leading to the motion
constraints of s3 max = 0.5h, = 2.75 m.

In contrast to the sphere, a vertical cylinder has a non-
convex shape and if placed very close to the mean water
level it will experience resonant motion of the fluid above
its flat top surface [14]. This phenomenon causes a rapid
change in the added mass, damping coefficients and excit-
ation forces at the restricted frequency range [I5]. There-
fore, the Pg-bound for the submerged cylinder has a more
complicated expression than for the spherical case (for full

derivation see [Appendix Al):

772ang8 ( 2J1(ka) B ae_kd"’)
T 73\ ko (ka) cosh(kdy ) ’
(7)
where do = di + he, Jy and J; are Bessel functions of the
first kind of order 0 and 1 respectively, x is the real solu-
tion of the dispersion equation w? = g tanh(kd;), which
can be approximated by w? = k2gd; using shallow water
conditions for the water domain above the cylinder.

The variation of absorbed power over the range of wave
periods for the three cylinders with different submergence
depth is demonstrated in Figure Similar to the spher-
ical case, the absorbed power of the submerged cylinders
decays faster at longer wavelengths even though it cannot
be clearly seen from Equation @ Comparing power for
spherical and cylindrical bodies, it is interesting to note
that the performance of the cylinder placed close to the
mean water level (ds = 3.75 m) is better than that of
the floating one within a particular range of wave peri-
ods (7s < T < 10 s). However, if the cylinder is placed
deep enough below the water surface, the power absorp-
tion is poorer for the submerged bodies across the entire
frequency range as is shown for the ds = 6.5 m case on

Figure

PB,s:

3. Control performance

In this section, differences between floating and sub-
merged converters are analysed from the control point
view. Also, frequency domain analysis of power produc-
tion is extended to the irregular wave conditions in the
time domain.

8.1. Optimal reactive control

Power levels presented in Figures [3|and [5] show the av-
erage absorbed power from reactively controlled WECs.
In the frequency domain, the maximum power output is
achieved by applying complex conjugate, or impedance
matching, control [I6]. The main idea that underlies this
control strategy is to tune the resonance frequency of the
system to the frequency of the incident wave by means of
the load (control) force exerted on the buoy. However, des-
pite the same control strategy applied to floating and sub-
merged converters, there is a principal difference between
their implementations which is governed by the presence
(floating) or absence (fully submerged) of the hydrostatic
restoring force.

The natural frequency of floating converters is defined
by the hydrostatic stiffness that can bring a disturbed
system to its equilibrium position. Thus, it can be cal-
culated utilising a simple equation for the mass-spring-
damper model:

C

wo = m + A(wg)’

(8)
where C is the hydrostatic stiffness, m is the mass of the
buoy and A(wp) is the value of the buoy added mass at the
natural frequency. However, in the case of fully submerged
buoys the hydrostatic stiffness is absent and there is no
restoring force that would keep the body submerged all
the time (if body is lighter than water). Therefore, the
natural frequency of submerged heaving WECs approaches
0 (wp — 0) unless an external restoring force (spring) is
applied to the system. This also relates to the floating
and submerged bodies that move in surge as their natural
frequency wg — O.

In addition to the natural frequency, the hydrostatic
stiffness affects the optimal control force that is required
for maximum power absorption. If the buoy is constrained
to move in heave only, its motion in frequency domain can

be described as [5]:

Zi(w)a(w) = Feae(w) + Fpro(w), (9)

where Fpto(w) is the control (power take-off) force applied
to the buoy and the intrinsic mechanical impedance of the
system Z;(w) has a form [5]:

2iw) = B@) + o (m+ 4@) - 5) . (o)

~In order to absorb maximum power, the control force
Fpio(w) = —Zppo(w)i(w) should satisfy the optimal condi-
tion [5]:

ZptO(w) = Zf(w), (11)

where * denotes the complex conjugate. Assuming that
the power take-off system has a linear behaviour, where
the machinery force is proportional to the instantaneous



position and velocity of the buoy, the load impedance may
be written as:

Zptol) = Byrolw) — j21e(®)

= (12)
where Ky, and By, are the stiffness and damping coeffi-
cients of the PTO system respectively. Thus, substituting
Equations @ and into Equation , optimal values

of the control parameters are:

Bpio(w) = B(w), Kpto(w) = w? (m + A(w)) —C. (13)

It can be seen from Equation that for the floating
WECs, the desired value of the PTO stiffness can take neg-
ative values Kpi(w) < 0 for the range of wave frequencies
when C' > w? (m + A(w)). However, for the submerged
buoys the PTO stiffness is always positive as C = 0. This
is a very important feature, as the positive Ky, can be eas-
ily achieved by using a physical spring component, while
implementation of the negative stiffness requires the re-
active power flow through the PTO system which is much
more difficult to achieve in practice.

3.2. Power output in irregular waves

Regular wave results presented in Section [2| demon-
strate the fundamental differences between floating and
submerged WECs. However, the comparison of these sys-
tems should be conducted under irregular wave time-series

that more accurately represent real sea states. Assuming
that the PTO system comprises spring and damping ef-
fects, the time-varying load force can be modelled similarly

to Equation :

FptO(t) = _Bptoé(t) - Kptoz(t)a

where z(t) and 2(t) are the displacement and velocity of
the buoy in heave.

Depending on the control strategy, Ky, and B, can
be tuned on a sea state basis [I7] or optimised in real
time on a wave by wave basis [I8]. The latter strategy
comes closest to the optimal reactive control in terms of
the power output [19], but it requires an accurate plant
model and future knowledge of the wave excitation forces.
Therefore, in this work it is assumed that PTO parameters
are tuned (optimised) for each sea state, which is easier to
implement in practice but leads to a sub-optimal control
method. Optimisation of PTO parameters is made using
an exhaustive search while allowing negative values of K,
for floating converters. A full description of the modelling

routine and simulation set-up can be found in
Bl

The performance of the spherical and cylindrical WECs
over the range of irregular sea states are shown in Figures|[6]
and [7] respectively. The power absorption is represented
in terms of the relative capture width (a ratio of the ab-
sorbed power to the power that is contained in the incident
wavefront of a width equal to the characteristic length of
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Figure 6: Relative capture width of the floating and submerged spherical WECs in irregular waves with significant wave heights of @ Hs=1m,
(]EI) Hs = 2 m, and @ Hs = 3 m over the range of peak wave periods. The sea states have been generated using a Pierson-Moskowitz wave
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the converter). The overall trend is consistent with regular
wave results: floating WECs demonstrate better perform-
ance across all sea states except several cases with T, < 6 s
and H; = 2 and 3 m, where motion of the floating con-
verters has already reached constraints. Also, previous
findings, that the cylinder placed closer to the mean wa-
ter level (ds = 3.75 m) can generate more power than its
floating counterpart at a range of wave periods, have not
been confirmed in irregular waves.

Another interesting observation is that a sphere sub-
merged deeper (ds = 10 m) shows poorer performance
across all sea states, even though according to the regular
wave results all buoys should absorb the same amount of
power up to wave periods of 7 s (see Figure. This may be
caused by the control strategy applied to all WECs which
is not optimal a priori. So the performance of the sys-
tem with fixed control parameters (even if they are tuned
for each sea state) can be highly dependent on the WEC
bandwidth.

3.8. Resonance bandwidth

Resonance (or absorption) bandwidth of the converter
corresponds to the frequency range where the absorbed
power stays within 50% of its maximum value. Thus, the
broader the bandwidth, the less need for control. Large
structures such as terminators or attenuators have broader
bandwidth than point absorbers, and for the latter, in-
crease in size leads to the bandwidth extension [20].

For comparison between floating and submerged
WECs, it is necessary to understand the impact of sub-
mergence depth on the system bandwidth. Consider the
response of converters when its resonance is tuned to only
one wave frequency from the spectrum as in Section [3.2
Figure [§] shows the non-dimensional power absorption of
spherical bodies of a = 5 m radius with different submer-
gence depths (ds; = 0, 6 m and 10 m) in regular waves of
H =1 m height with the mass of all buoys kept constant
at m = 0.5pV. The power take-off damping and spring
coefficients are chosen such that each system reaches res-
onance at the wave period of Ty = 8.5 s (wg = 0.74 rad/s),
allowing negative PTO stiffness for the floating case. No
motion constraints are considered. The power absorption
is presented as % with a maximum possible value of 1 for
the heaving body. It can be seen that the resonance band-

width (Aiig”) of the floating sphere is about 4 times wider

than that of the submerged one. Moreover, the deeper the
body is submerged, the narrower the resonance bandwidth
becomes. This can be explained by the fact that the res-
istance (radiation damping) of the converter decreases as
the immersion depth increases, which leads to a narrow
bandwidth of fully submerged buoys.

Results in Figure [§ show how the performance of the
WECs deteriorates when the converter resonance is tuned
to only one frequency from the spectrum. Similarly, con-
sider a behaviour of the same converters in irregular waves
when fixed controller parameters are chosen to match only
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Figure 8: Resonance bandwidth of the spherical WECs in regular
waves of H = 1 m height: non-dimensional absorbed power vs. nor-
malised wave frequency. Converters of 5 m radius are tuned to reach
resonance at the wave frequency of wg = 0.74 rad/s.
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Figure 9: Resonance bandwidth of the spherical WECs in irregular
waves of Hs = 1 m significant wave height: non-dimensional ab-
sorbed power vs. normalised peak wave frequency. Converters of
5 m radius are tuned to the sea state with a significant wave height
of Hs =1 m and a peak wave period of T), = i—: =10 s. All irregu-

lar wave time-series have been generated using a Pierson-Moskowitz
wave spectrum.

one sea state from the site wave climate. Thus, the non-
dimensional power absorption of spherical WECs in irreg-
ular waves of Hy; = 1 m significant wave height is shown
in Figure @ The fixed PTO stiffness (K,,) and damp-
ing (Bpio) coeflicients are set such that each converter has
maximum power output at the sea state of H;, = 1 m and
T, = 10 s. So values of P in the figure correspond to the
absorbed power when one set of control gains is used across
all sea states, while for Py, PTO parameters are optim-
ised for each sea state. These results confirm frequency
response findings: changes in the sea conditions lead to
a more noticeable decrease in energy harvesting for sub-
merged converters than for the floating one. A difference
in passband width in Figures[§land[J]is due to the fact that
bandwidth in regular waves characterises deviations from
optimal control, while its value in irregular waves shows
the sensitivity of the averaged absorbed power to changes
in the sub-optimal controller (even with optimised para-
meters).

Overall, it is essential to apply optimal control to point
absorbers due to their narrow bandwidth, which is even
narrower for submerged cases as the bandwidth decreases
with increased immersion of the buoy.



3.4. Considerations for passive phase control

Optimal control uses bi-directional power flow to ma-
nipulate the resonance frequency of the WEC, whereas
there are other control strategies that can improve the
power output of the system without the need for react-
ive power flow through the machinery. Phase control,
mostly represented by latching [21, 22] and declutching
[23], achieves the optimal phase condition between the
buoy velocity and the wave excitation force by locking
or unlocking the buoy motion during parts of the oscil-
lation cycle. Thus, latching and declutching controls refer
to the ‘bang-bang’ strategies where the machinery force is
switching between some constant and a very large value
for latching and between zero and a constant value for
declutching.

Latching control shows the best performance when the
incident wave frequency is lower than the resonance fre-
quency of the device (w < wp) [2I]. In this case, the
buoy velocity leads the excitation force (see Figure [10a))
and there is only a small part of the cycle when the buoy
should be kept stationary to achieve an optimal phase con-
dition. However, when w > wy, the buoy velocity lags the
excitation force (see Figure meaning that the buoy
motion should be locked for at least half of the cycle which
is not practical from the power absorption point of view.
In contrast, the declutching control strategy performs bet-
ter with systems where the natural frequency of the WEC
is higher than the wave frequency (w > wg) [23].
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Figure 10: Velocity (blue solid line) and excitation force (red dashed
line) time series for the spherical WECs of 5 m radius under the
regular wave of H = 2 m height and period of T' =9 s without any
control: @ floating and @ submerged (ds = 10 m).

As already noted, the natural frequency of submerged
converters is always lower than the incident wave fre-
quency, whereas for the floating point absorbers its value
lies at higher frequency range. Therefore, it may be con-
cluded, that the latching control is more beneficial for the

Optm_lal positive negative
reactive . .
spring spring
control
passive
phase declutching latching wave
control —e ® L £
Tequency
wo — 0 w wo > w
submerged ocean waves floating
PAs of interest PAs

T=5-15s

Figure 11: The generalised diagram of the wave energy converter
control depending on the location of its natural frequency with re-
spect to the incident wave frequency.

floating converter while declutching is more suitable for
its submerged counterpart. However, the latter may also
take advantage of the optimal latching control if to shift its
resonance to the higher frequency range by an additional
physical spring. These results are graphically shown on
Figure [11] along with findings on reactive control. Thus,
choosing among different control strategies for submerged
converters it is necessary to keep in mind their distinctive
features from floating ones.

4. Choice of a reasonable WEC size

In this section, appropriate sizes of the floating and
submerged WECs are studied for several generic body
shapes assuming that all buoys are optimally controlled
at each wave frequency. Then, the obtained results are
examined under irregular wave conditions.

According to the results presented in Section 2] floating
and submerged converters should be of different sizes in
order to capture the same amount of wave energy. Thus,
using the upper power absorption bounds P4 and Pg, it
is possible to choose an appropriate size of the WEC for
a particular sea site. Falnes [I] proposed a methodology
of selection of the WEC size and power take-off capacity
according to the following steps:

Sea site — Jr. Choose an appropriate sea site location
and determine a wave power threshold Jp (kW /m)
which is being exceeded only one third of the year.

Spectrum — T,(T.). Find the peak period, or the peak
energy period of the most frequent waves according
to the sea site probability data (T}, or T¢).

Jr, Tp(Te) — T, H. Relate Jr and T, to the regular
wave of period T = T. ~ 0.8587, (for the fully
developed uni-modal sea) [24] with the same wave
power level. Determine the wave height of the cor-
responding regular wave using the equation Jr =
pg*H*T
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T,H — V. Calculate the body volume solving the equa-
tion P4 = Pp that results in:

V=gt (15)
€o

The body chosen according to this approach will oper-
ate at full capacity for at least one third of the year.

Now consider an example assuming that there is a need
to select a wave energy converter for the site where wave
power level exceeds 34 kW /m about one-third of the year,
a significant wave height is Hy = 2.5-3 m and the peak
wave period is T, = 10 s. This corresponds to the reg-
ular wave of H = 2m and T = 8.5s. Using Equa-
tion it may be calculated that the volume of the
floating converter regardless of shape should be 322 m3.
In the case of the submerged converters, the same meth-
odology can be applied but using different Pg-bounds and
expressing all parameters in terms of the body radius. For
the submerged sphere setting the maximum displacement
in heave as s3max = 0.67a, the submergence depth of
ds = 1.87a should ensure the operation of the body re-
mains under water at all times. As a result, solving the
equation P4 = Pp , (Eq. = Eq. @) numerically with
one unknown a, the size of the submerged sphere should
be 696 m? for the same sea site, which is more than twice
the required volume of the floating converter. Similarly,
the volume of the cylindrical WECs should be 448 m3 us-
ing Equations () and (7), and setting h. = a, d; = 1.2a,
53 max = 0.5a.

To demonstrate the effect of the body size on power ef-
ficiency, the power absorption curves for floating and sub-
merged spherical bodies of six different radii (3-8 m) are
shown on Figures [12a] and [I2] respectively, where the dis-
placement amplitude of all converters is constrained by
0.67a and the ds distance for submerged WECs is 1.87a.
The dotted vertical line and points on curves correspond
to the targeted wave period of T'= 8.5 s.

The data on Figure [I2] can also be represented in
terms of the Power-Volume correlation for the fixed wave
period of interest. Thus, in order to make the ana-
lysis more generic, the spherical case shown on Figure
has been complemented by three other body shapes in-
cluding a cylinder, an ellipsoid (oblate spheroid) and a
chamfered cylinder (see Figure [13). Table 1 shows para-
meters of all systems and the correlation between them.
The maximum motion of all bodies is chosen in a way
that $3.max ~ V/(2S4y) = V/(2ma?) meaning that all con-
verters have the same volume stroke, where S;, is the
cross-section area of the buoy in the horizontal xy plane.
The submergence depth is set such that the body of 524 m?
volume at the maximally extended stroke has 1 m distance
from its top surface to the mean water level, for other sizes
this distance is scaled down or up according to the body
radius. Hydrodynamic parameters of mentioned geomet-
ries have been obtained using WAMIT [12]. Mesh conver-
gence has been checked and typical models composed of
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Figure 12: Power absorbed by the @ floating (ds = 0) and @ sub-
merged (ds = 1.87a) spherical WECs of different radii vs. wave
period. Wave height is H = 2 m, motion of all buoys is constrained
by 0.67a. The black dashed curve corresponds to the P4 limit from
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Figure 13: Shapes of WECs used in the Power-Volume analysis.

The dependence of the maximum captured power on
the structural volume of four bodies for the sea state of
interest with H = 2m, T = 8.5s is demonstrated on
Figure The upper limit of 0.6 MW corresponds to
the maximum of P4 curve at T = 8.5 s, and markers on
each curve show the body volume chosen according to Fal-
nes’ methodology. Thus, the size of submerged buoys de-
signed for the same sea site should be 1.4 — 2.2 larger than
the floating one with approximately the same power ca-
pacity. Interestingly, that among all submerged cases, a



Table 1: Parameters of the WECs from Figure

Parameter Notation Sphere Cylinder Ellipsoid Chamfered cylinder
Radius a r Llr  rv/2=~1.26r rv/1.5 ~ 1.14r
Height (vertical dimension) h 2a a a a

Volume %4 4ma®/3 na’ 21a®/3 85ma® /96
Submergence depth ds 1.87a 1.2a a 1.1a
Motion constraints 53 max 2a/3 0.5a a/3 0.45a

body with a cylindrical shape should be the smallest while
the spherical buoy should be the largest to generate the
same amount of power. The desired volumes of the ellips-
oid and chamfered cylinder are estimated to be somewhere
in-between.

Equivalent spherical radius, m
3 4 5 6 7

floating WECs
===== sphere (submerged)
cylinder (submerged)

Power, MW

---------- ellipsoid (submerged)
chamfered
~ 7 cylinder (submerged)

1000 1500 2000
Volume, m?

Figure 14: Dependence of the absorbed power on the volume of
WECs for the regular wave of H = 2 m,T = 8.5s. Parameters
of all buoys are taken from Table m The horizontal dashed line
corresponds to the maximum power that can be captured from this
regular wave by an oscillating axisymmetric body. Markers show
optimal volumes of WECs chosen according to Falnes’ methodology
based on power capacity.

In addition to the absolute values of power and volume,
the power-to-volume ratio is also of interest as it can be
indirectly related to the estimation of the converter cost
[25]. It has been observed that for the heaving point ab-
sorbers the smaller the physical volume of the body, the
larger the power-to-volume ratio [26]. To demonstrate the
impact of this relationship, it has been calculated for five
different systems based on the information from Figure[T4]
Power has been normalised according to the Froude scal-
ing law choosing the wavelength A\ = 27 /k = g/(27)T? as
a length parameter:

P v
= Wy Vn = Fa
and is presented in Figure Thus, for the floating con-
verters the power-to-volume ratio decreases with an in-
crease in WEC volume. However, for submerged bodies
there is a range of volumes where this ratio takes the max-
imum value which shows the importance of proper selec-

P, (16)

tion of the buoy size. Therefore, based on the maximum
value of the power-to-volume ratio, the size of the sub-
merged cylinder should be approximately 420 m?, which
is very close to 448 m? found using Falnes’ methodology.

200

floating WECs
————— sphere (submerged)

cylinder (submerged)

---------- ellipsoid (submerged)
chamfered

~ 7 cylinder (submerged)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
|4 x1073

Figure 15: Power-to-volume ratios vs. buoy volume normalised to
the wavelength for floating and submerged WECs.

In order to investigate whether converters of the
volumes found above have similar power absorption po-
tential, their performance is investigated in the sea state
with a significant wave height H, = Hv/2 = 2.83 m and
a peak wave period T, = T./0.858 = 10 s. Thus, the fol-
lowing buoy geometries are included in the irregular wave
analysis: a floating cylinder of 322 m?, a submerged sphere
of 696 m?, a submerged cylinder of 448 m?, a submerged
ellipsoid of 600 m? and a submerged chamfered cylinder
of 510 m3. All other geometric parameters can be calcu-
lated using Table It is assumed that control gains are
optimised on the sea state basis (see Equation which
are optimised to provide maximum power. As a result, an
averaged absorbed power and a relative capture width are
presented in Figure Colour bars on the left show the
averaged absorbed power, while dark blue bars on the right
correspond to the relative capture width of each converter.

Despite the fact that all converters have been designed
for this particular sea site, they demonstrate power pro-
duction levels lower than expected from the regular wave
analysis. This is due to sub-optimal control applied to all
cases, which once again demonstrates the importance of
the control strategy for the WEC development. In addi-
tion, although all submerged converters have lager volumes
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Figure 16: Levels of the averaged absorbed power (colour bars on the
left) and relative capture width (dark blue bars on the right) of the
floating and submerged converters at the irregular wave time-series
of Hy = 2.83 m and T}, = 10 s. Parameters of all buoys are taken
from Table

than their floating counterpart, their power absorption is
still around 1.2-1.5 times lower than that of the floating
cylinder. This means that fully submerged buoys should
be even larger than shown in Figure [14]in order to match
the total power of the floating converter.

Overall, for the same power output submerged WECs
should be at least 1.5 times larger than their floating coun-
terparts where the exact volume ratio is the subject to
control, shape, submergence depth and other parameters.

5. Array of small WECs vs. a large buoy of equal
volume

According to the findings presented in Section[d] in par-
ticular Figure floating wave energy converters of small
size are more beneficial when employed for wave power
generation in comparison with large ones in terms of the
power-to-volume ratio. According to Budal’s diagram (as
cited in [1]), the volume in Equation (5|) does not necessary
represent the size of one unit, and it can be interpreted as
a total volume of all converters within the wave energy
array. It has been shown that a compact array of small
buoys can capture much more power than a single WEC of
equal volume, with the advantage of having wider band-
width [27], however, this comparison was based on the
floating truncated cylinders that are tuned to their nat-
ural frequency of oscillation, not optimally controlled.

A similar analysis for the fully submerged converters
is performed here but applying optimal control across the
entire range of wave periods. One relatively large spher-
ical buoy of a = 5 m radius has a displaced volume of
V = 524 m3. This volume alternatively can be formed
using an array of smaller converters, e.g. 5 units of 3m-
buoys, 125 units of 1m-buoys or 1000 units of 0.5m-buoys.
Of course, the same volume does not guarantee the same
manufacturing cost given the different surface areas, but

10

production of buoys in large quantities will inevitably lead
to lower unit manufacturing costs.

The amount of power extracted by each array in reg-
ular waves of 2 m height is presented in Figure [17] for the
floating (ds = 0) and fully submerged (ds = 1.87a) cases of
WECs, where all spheres have a maximum stroke of 0.67a.
The energy absorbed by each array has been calculated by
multiplying the power from an individual WEC by the
number of units within the array but neglecting to take
into account possible hydrodynamic interaction between
buoys. As a result, in the case of floating systems, smal-
ler units have higher power absorption than a single large
buoy across the entire range of wave periods.

This conclusion, however, is not applicable to the fully
submerged WECs as the performance of the array drops
dramatically with a decrease of the buoy size at long
wavelengths. It seems that the “small is beautiful” ad-
age of Falnes [I] only applies to floating WECs, not sub-
merged. As a result, for sites with low frequency waves
using submerged converters it would be more beneficial to
design one large buoy that will have the best performance
at the targeted sea site than to consider smaller units of
equal volume.
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Figure 17: Power absorbed by @ floating (ds = 0) and @ sub-
merged (ds = 1.87a) wave arrays of the same total volume V =

524 m? in regular waves of 2 m height. The radius and number of
units within the array is specified in the legend. Dash-dotted curves
correspond to the Pp limit of the 5m-buoy. The displacement in
heave of all converters is constrained by 0.67a.

WECs chosen according to Falnes’ methodology are
designed for one dominant wave of the particular sea site.
However, due to the irregular nature of ocean waves and
due to the fact that submerged converters are effective
power absorbers only within a specific range of wave peri-



ods, it could be advantageous to form an array from the
buoys of several different sizes, similar to [28,[29]. Thereby
each converter will target a particular wave frequency from
the spectrum while maximising the power absorption of
the entire farm.

6. Combination of modes

The combination of motion modes in wave power ab-
sorption is attractive due to increased efficiency and band-
width. For example, Salter’s duck [2] utilises surge, heave
and pitch oscillations in order to capture the maximum
power available in the wave. Another solution has been
offered in [30, BI], B2] introducing three cables connected
to the spherical buoy in order to make the surge mode
controllable by the power take-off system. Therefore, the
power efficiency of submerged and floating WECs with dif-
ferent motion modes is compared in this section.

Surging and heaving floating converters radiate differ-
ent types of waves that lead to different power absorption.
According to Equation the Ps-bound of the surging
body is twice as high as that of the converter that moves
in heave only [5]. The low frequency limits Pp are also
different for these motion modes where Equation @ de-
scribes heave oscillation, while an expression for the sur-
ging floating sphere has a form of [10]:

VH
Pgl}nge = 27T3051,ma" T3

Analysing Equations and , it is clear, that the
Pp-bound for the surging body is O(T~%), while for the
heaving body this bound has a smaller decay rate and
is O(T~1). These results are very similar to the previ-
ous comparison of floating and submerged heaving bodies
meaning that the surging floating sphere is a poorer power
absorber at long wavelengths than the same body that os-
cillates in heave. Comparing motion modes of the floating
sphere the following features should be outlined:

surge

- Py — 2PII47,eave;
- P59 = O(T~?), while PR3 =

(17)

o).

Unlike floating converters, fully submerged buoys have
almost the same power efficiency from oscillations in heave
or surge. Thus, the Pg-bounds for the surging and heaving
submerged spheres have the same expressions described by
Equation () which has been shown in [10]. Hence, for the
fully submerged spherical WEC:

B PZW'EIC — QPALeave’
surge __ pheave __ -3
- PB,s _PB75 _O(T )

The difference in power efficiency between surging and
heaving spheres is demonstrated in Figure The sphere
radius is @ = 5 m, motion in surge (mode 1) and heave
(mode 3) is constrained by $1max = S3,max = 0.67a =
3.3 m, submergence depths are ds =0 m, 1.2a = 6 m and
2a = 10 m, wave height is taken as H = 2 m. It can be
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seen, that at longer wave periods heave motion is dominant
for floating converters showing that the power contribution
from the surge mode may be marginal for floating systems.
In contrast, a submerged sphere that oscillates in surge is
more efficient across the entire frequency range. There-
fore, the power efficiency of the submerged system may
increase by two to three times due to the additional con-
trollable degree of freedom. Also, the ratio between power
levels from surge and heave does not change with a sub-
mergence depth as shown in Figures[I8band It should
be noted that the surging floating sphere utilises only half
of its volume to couple with the fluid (at nominal depth),
while for a submerged sphere the total volume is involved
in power absorption. This explains why the power level
of a surging floating sphere is lower than that of a fully
submerged one.

For comparison, similar plots are presented for the ver-
tical cylinder of h, = a = 5.5 m on Figure Mo-
tion constraints in each mode are calculated as $1 max =
V/(28:,) = ma*h./(4ah.) = ma/4 = 4.32 m and $3 max =
V/(2S4y) = ma*h./(2ma?) = a/2 = 2.75 m in order to have
equal volume stroke [I0] in surge and heave. Interestingly,
that for the vertical cylinder placed closer to the water
surface (ds = 3.75 m) at higher wave frequencies surge is
dominant, while for low-frequency waves more power can
be absorbed from heave. When the cylinder is submerged
deeper (ds = 6.5 m), the situation is closer to the spherical
case, where the surging body captures more power across
entire range of wave periods. As a result, the power dis-
tribution between motion modes for the fully submerged
bodies depends on the submergence depth and the aspect
ratio of the converter and a clear trend cannot be identi-
fied, as in the case of floating systems.

Based on this analysis, it may be concluded that em-
ployment of several motion modes in power generation
is more advantageous for the fully submerged converters,
while such a benefit for the floating counterparts will be
marginal.

7. Conclusion

The comparison between floating and fully submerged
WECs has been performed in order to identify main dis-
tinctive features between the systems.The analysis has
been carried out in regular and irregular waves using a
linear wave theory approximation for axisymmetric point
absorbers that extract wave energy from heave or surge
motion, or both.

Examples of two generic shapes (sphere and vertical
cylinder) have shown that the efficiency of submerged con-
verters is poorer than that of the floating ones at long
wavelengths, while there is a narrow range of wave peri-
ods where the performance of submerged cylindrical buoys
could be superior than that of its floating counterpart. In
addition, WEC bandwidth decreases as the submergence
depth of the buoy increases indicating the need for react-
ive control for the fully submerged converters. The ab-
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Figure 18: The power absorbed by the surging and heaving spherical
WECs of 5 m radius with different submergence depth: @ floating
ds = 0 and submerged (]ED ds = 6 m, ds 10 m. Motion
amplitudes in heave and surge are constrained by s1,max = $3,max =
0.67a = 3.3 m. Wave height is set to H = 2 m. The dashed curves
correspond to the P4 limit from Eq. (4)), and dash-dotted curves
show the Pg bounds from Eq. and (6).

sence of the hydrostatic restoring force for the submerged
buoys affects the implementation of control strategies for
this converter type. Thus, floating converters may benefit
from latching phase control, whereas declutching is more
suitable for submerged systems. To achieve the same level
of generated power, buoys placed under water should be
1.4-2.2 times larger than those that operate on the wa-
ter surface. Thus, the size of the fully submerged WECs
should be chosen according to the targeted wave climate
and cannot be replaced by the array of smaller converters
of equal volume. Finally, submerged buoys would benefit
more from multiple degrees of freedom than their floating
counterparts.

The above analysis may give the impression than sub-
merged buoys are less favourable energy converters. It
should be noted, that the main objective of this study is
not to show which WEC is better, but to clarify some dif-
ferences in performance and design criteria. While the cur-
rent paper is restricted to axisymmetric buoy shapes, there
are some examples when submerged converters demon-
strated good power absorption abilities. Thus, several
solutions of maximising energy harvesting of submerged
WECs have been offered so far: (i) to use a device with
a dynamically changing volume (e.g. Archimedes Wave
Swing device [33]); (ii) to keep the body submerged as
close as possible to the mean water level (e.g. CETO sys-
tem [34]); or (iii) to use a terminator body which inher-

12

dy = 0 (floating)

Power, MW
© o <o
' (=) [o'e} —
T T T |

=4
[V
T

(=}

d, = 6.5 m
1 Vi /
0.8 A1
= Ay
= 0.6 RN
) /0N
g 04 surge/ A/ S,
& Va4 Mo
0.2 / A/ heave LN
/
b
0 =
5 10 15 5 10 15
Wave period T, s Wave period T, s
(b) (c)

Figure 19: The power absorbed by the surging and heaving ver-
tical cylinders (he = a = 5.5 m) with different submergence depth:
@ floating ds = 0 and submerged (]ED ds = 3.75 m, ds = 6.5 m.
Displacements in surge and heave are constrained by si max =
ma/4 = 4.32 m and $3max = a/2 = 2.75 m respectively. Regular
wave height is set to H = 2 m.

ently has a broad resonance bandwidth (e.g. the Bristol
cylinder [35], 36]). In addition, as previously mentioned,
submerged converters have a number of advantages which
may be essential from the economic perceptive.

Appendix A. Estimation of the upper bound of
the absorbed power for the sub-
merged cylinder that oscillates in
heave

The average power absorbed by the oscillating body
can be calculated as [5]:

P = |l cosg — S Bl < 5l Fuacllil, (A1)
where Fem is the excitation force amplitude, @ is the amp-
litude of the body velocity, ¢ is the phase angle between
the excitation force and the buoy velocity and B is the
hydrodynamic damping coefficient.

The excitation force exerted on the body in the j-
direction is:

Fewc,j = _//ﬁ(xayvz)nj dSv (AQ)
S



where p(x,y, z) is the complex amplitude of the hydro-
dynamic pressure on the body surface, n; is the unit nor-
mal to the body surface pointing inside the water domain
and dS is the surface element of wet surface S.

Hals [I0] showed, that the hydrodynamic pressure p
on the body surface will never be larger than opgy, where
o =2, po = poe’TF*+tP) ek g the pressure amplitude of
the undisturbed incident wave, pg = pglo = pgA and ¢¢
is the phase angle of the incident wave. As a result:

i(—km—i—g{)()ekz.

p(z,y, 2) < opg = opgle (A.3)

In order to derive the simplified equation of the heave
excitation force for the submerged cylinder, cylindrical co-
ordinates (r, 6, z) are introduced leading to dS = rdrdf,
where 0 < r < a and 0 < 6 < 27. Also, pressure in Equa-
tion should be integrated over two surface areas: top
(p¢) and bottom (p) faces of the truncated cylinder. Thus,

a 2w

Fewc,iﬂ = // (ﬁt(ﬁ 9, _dl) _ﬁb(rv 67 _d2)) rdrdf. (A4)
0 0

The hydrodynamic pressure on the cylinder bottom can
be described by Equation (A.3):

(—krcos 0+o¢) eflcdg

py(r, 0, —ds) < JpgAei (A.5)

However, for the cylinder top free-surface effects are
more significant due to the possible resonance amplifica-
tion of waves in the water domain above the cylinder and,
therefore, the hydrodynamic pressure cannot be simplified
using e** function. Thus, taking the first order approxim-
ation for the upper domain from [37], the hydrodynamic
pressure on the cylinder top can be expressed as:

Jo(kr)

R 0. —di) ~ paA i(—krcosO+¢c) _ “O\M )
Pe(r,0,—dy) = pgAe Jo(ka) cosh kdy’

(A.6)
where Jy and J; are Bessel functions of the first kind of
order 0 and 1 respectively, x is the real solution of the
dispersion equation w? = gk tanh(kd;), which can be ap-
proximated by w? = k2gd; using shallow water conditions
for the water domain above the cylinder.

Inserting Equations (A.5)—(A.6) into (A.4) and
using e~ kT eosd cos(—krcosf) + isin(—krcosf),
| sin(—krcos@)| < |krcosf|, | cos(—krcosf)| < 1, the ap-
proximate expression of the excitation force is:

o [ ]

opgAm (

Jo(kT)

Fexc,B‘

IN

—kd2 ) 1 dr d6
Jo(ka) cosh kdy — e )T "

2a.J;(ka)
kJo(ka) cosh(kdy)

For the deeper submerged bodies and if ka — 0, then
Jo(ka) = 1 and Jy(ka) — % and Equation (A.7)) can be

further simplified to:

Fezc,S‘ < (A.8)

1
2 _ —kd2
opgAma (cosh(/-zdl) e ) ‘ .

Finally, given the expression for the excitation force
and setting |G| < ws3 max, the upper power bound for the
heaving submerged cylinder is:

P <2‘Fezc5‘|u3|

2a.J1(ra) 2 ,—kd -
< A - 2
= |7PgaT (HJo(/ia) cosh(kdy) @e &
_ mlapgH 2J1(ka)

_ o —kds
T Cdmax </€J0(Iia) cosh(kdy) ae ) ’

(A.9)

Appendix B. Time-domain model of the wave en-
ergy converter

The most common mathematical model that describes
a time-domain response of the wave energy converter in
waves is the Cummins equation [38]:

(m+ Ax) z—i—/ Kroa(t —T)2(T)dT + Cz =

Femc+Fpto+FhSa (Bl)

where m is a buoy mass, A, is the infinite-frequency ad-
ded mass coefficient, C' is the hydrostatic stiffness, K,.qq(t)
is the radiation impulse response function, F,. is the wave
excitation force, Fj, is the load force exerted on the buoy
from the power take-off system, and Fj, is the additional
force that keeps the body motion within allowed boundar-
ies similar to the physical hard stop mechanism.
The load force is modelled as a linear spring-damper
system:
Fpo = (B.2)

_Bptoz.: - Kptoza

where K, and By, are the PTO stiffness and damping
coefficients (control parameters). To constrain the motion
of the buoy, the hard stop system is modelled by a repulsive
energy potential [39]:

Fhs = - Khs,min(z -

- Khs,max (Z -

2)

Zmax)7

Zmin ) u(zmin -

Zmax)U(z — (B.3)

where u(-) is Heaviside step function, Kjs min and Kps max
are the hard stop spring coefficients, zmin and zpa.x are
the stroke limits relative to the nominal position of the
converter. The effect of this force is not taken into account
while calculating useful absorbed energy.

Equation has been implemented in Sim-
ulink/MATLAB [40] with a time step of 0.01 seconds using



the ode23s solver. The duration of all simulation runs has
been set to 300 x T}, but not less than 1200 seconds and
the first 15 x T}, have not been included in the analysis due
to the initial transient state. Hydrodynamic (excitation
and radiation) forces have been calculated using WAMIT
[12]. The convolution integral in Equation has been
replaced by the state-space model using the Marine Sys-
tem Simulator toolbox [41I]. The irregular wave time-series
have been implemented using the Pierson-Moskowitz wave
spectrum [24].

The mass of all floating and submerged buoys is kept as

m = 0.5pV. Values of motion constraints are specified in
Table [1| for each buoy geometry under consideration. The
hard stop spring coeflicient is set to Kps min = Khsmax =
10% N/m. Unless otherwise stated, the PTO control para-
meters Kpto, Bpto are optimised for each sea state using
brute-force search.
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