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Abstract

Background: Spirometry reference values are important for the interpretation of spirometry results. Reference values should
be updated regularly, derived from a population as similar to the population for which they are to be used and span across
all ages. Such spirometry reference equations are currently lacking for central European populations.

Objective: To develop spirometry reference equations for central European populations between 8 and 90 years of age.

Materials: We used data collected between January 1993 and December 2010 from a central European population. The data
was modelled using ‘‘Generalized Additive Models for Location, Scale and Shape’’ (GAMLSS).

Results: The spirometry reference equations were derived from 118’891 individuals consisting of 60’624 (51%) females and
58’267 (49%) males. Altogether, there were 18’211 (15.3%) children under the age of 18 years.

Conclusion: We developed spirometry reference equations for a central European population between 8 and 90 years of
age that can be implemented in a wide range of clinical settings.
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Introduction

‘‘Spirometry measurements are important in diagnosis and

follow-up of patients with respiratory diseases and their interpre-

tation relies on the availability and use of appropriate reference

equations [1]. In Europe, the most commonly used reference

equations are outdated [2] and the continued publication of new

reference equations [3] reflects the widespread recognition of the

limitations of the existing ones. Most reference equations are

indeed inappropriate for central European populations as they

have either been derived from a small or non-European

population [3] or used statistical methods that cannot adequately

model the complexity of age-dependent lung function [2]’’.

Additionally, published reference values are mostly derived from

healthy never-smoking populations of restricted age ranges [3] and

should not be extrapolated beyond the published range [1,4,5].

Practically, however, clinicians often track disease progression over

long periods or assess effectiveness of therapy over time in patients

who are not ‘‘healthy never-smokers’’. There is, therefore, an

important need for practical reference values spanning across all

ages derived from a population most similar to that for which the

equations are to be used.

Such reference equations are statistically challenging as on the

one hand individual spirometry measurements are determined by

age, sex, height, health status, ethnicity, equipment and general

population characteristics (so called ‘‘cohort effect’’) [1,4,6] and

the European Respiratory Society (ERS)/American Thoracic

Society (ATS) recommend taking these characteristics into account

when developing and updating reference equations [1]. On the

other hand, the lung volume changes according to height and age

with a skewed distribution [7,8]. Statistical methods taking

multiple variables as well as this complex distribution into account

have been developed and compared [9] in recent years. A possible

approach that has been applied to spirometry data are General-

ized Additive Models for Location, Scale and Shape (GAMLSS)

methods. GAMLSS allows modelling of data with skewed and

kurtotic distribution and is therefore ideal for spirometry reference

equations including transition from childhood to adulthood

[10,11].

The aim of this study was to develop reference equations for a

central European Population between 8 and 90 year olds.
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Materials and Methods

In this study we used data collected by the ‘‘LuftiBus’’ which is a

project that has been described in detail previously [12,13].

Briefly, the ‘‘LuftiBus’’ is a mobile bus equipped with two flow-

sensing spirometers that tours the greater Zurich (Switzerland)

area and offers spirometry measurements to the general popula-

tion. Spirometry data were recorded electronically along with data

from a standardised interviewer-administered questionnaire col-

lecting basic information on health and lifestyle of the subjects.

Lung function tests were charged 10 CHF for adults and 5 CHF

for children if the bus was not leased by an organisation or a

community in which case the test was free of charge. When the bus

was leased by schools, entire classrooms were tested. In children,

weight (kg) and standing height (cm) were measured according to

WHO recommendations [14], in adults they were either asked or

measured.

Study Population
For this analysis we used the data collected from volunteers

between January 1993 and December 2010. In the course of the

years the ‘‘LuftiBus’’ visited each village of the Zurich County. In

each village a similar proportion of the population was tested. This

proportion ranged from 0.66% in Andelfingen to 2.05% in

Dielsdorf. Additionally, the age distribution of the ‘‘LuftiBus’’

dataset is similar to the age distribution of the Swiss population

with the exception for an over-representation of teenagers [15].

Although the population tested was mainly of Western European

descent, ethnicity was recorded as of 2004 (33.7% of the whole

population). Non-Western European descent participants account-

ed for 375 (2.04%) men and 355 (1.98%) women and were

excluded from the analysis. They were the only individuals

excluded from the dataset. The Zurich population is representative

of Central and Western European populations [16], or North-

West/Central European populations [17].

Spirometry
The ‘‘LuftiBus’’ is equipped with two computerised pneumo-

tachographs (SensorMedics1 Vmax Legacy 20c spirometer run by

Vision 7-2b software; VIASYS, Yorba Linda, CA, USA). The

volume signal of the equipment was calibrated at least once daily

with a 3-L syringe. Tests were performed in a sitting position

according to American Thoracic Society (ATS) guidelines until

end of 2005 and ATS/European Respiratory Society (ERS)

guidelines as of 2006 without nose-clips and after oral instruction

by the technician [18,19]. Participants were assisted by trained

spirometry technicians who performed immediate on-screen

evaluation of major acceptability criteria (including start, duration

and end of test) in addition to the automated review performed by

the computer software. As recommended by the ATS/ERS task

force [19] subjects were asked to perform up to a maximum of

eight manoeuvres in an attempt to obtain reproducible results.

The largest forced vital capacity (FVC) and forced expiratory

volume in one second (FEV1) were selected. All other parameters

[FEV1/FVC ratio, peak expiratory flow (PEF), mean expiratory

flow at 75%, 50%, 25% of expired volume (MEF75, 50, 25)] were

taken from the trial with the largest sum of FVC and FEV1.

Definition of variables
For the analysis we defined the two exploratory variables

‘‘smoking’’ and ‘‘sick’’. Smoking was defined as a cumulative self-

reported smoking history of more than one pack-year. A pack-year

being defined as years of smoking times the number of cigarettes

smoked per day divided by 20. For the exploratory variable

‘‘smoking’’ passive smokers were considered non-smokers. Sick

volunteers were defined as meeting one of the following criteria: i)

common cold at the time of the measurement or ii) lung disease at

the time of the measurement, which included acute bronchitis or

respiratory symptoms (cough, wheezing, phlegm, shortness of

breath during rest or exertion); asthma medication at the time of

the measurement; history of asthma; history of chronic obstructive

pulmonary disease; chronic bronchitis or a history of other lung

diseases (e.g. lung surgery, pulmonary embolism). Volunteers with

non-respiratory diseases such as diabetes or heart diseases were

included in the healthy group. For the analysis we defined 4 health

groups: healthy/non-smoker, healthy/smoker, sick/non-smoker

and sick/smoker.

Statistical analysis
Statistical analysis was performed with the statistical software

‘‘R’’ version 2.13.1 (R Development Core Team 2011) with the

packages ‘gamlss’ (version 4.0-8) and ‘gamlss.tr’ (version 4.0-4) for

the GAMLSS models [10,11,20] and with the package ‘quantreg’

(version 4.71) for the quantile regression models [21]. Within the

GAMLSS framework we used the four-parametric Box-Cox

power exponential density distribution function (BCPE(m, s, n,

t)) as this distribution allows modelling of the expectation (m), the

variance (s), the skewness (n) as well as the kurtosis (t) [10] and a

truncated BCPE distribution for FEV1/FVC as that endpoint

cannot exceed 100%. Due to the non-linear relation between the

spirometry parameters and age we used a bent hyperbola model

for the m link with two change points and two transition

smoothness parameters. Further, the non-linear relation between

the spirometry parameters and age for the s link was modelled by

fractional polynomials of the 2nd degree. The change points and

the transition smoothness parameters were estimated using the L-

BFGS-B algorithm and within the GAMLSS models framework

using the generalized Akaike’s information criteria (GAIC) with a

penalty of 3 and Bayesian Information Criterion (BIC). Contin-

uous variables are presented as median and inter-quartile range.

We modelled the relation between the spirometry parameters and

the covariates age, height, sex, smoking status and disease status.

Besides, several models with interaction terms formed of the

variables age, sex and height were fitted and selected using GAIC

with a penalty 3 and BIC.

Results

Study population
From a total of 128’568 measurements 9’677 were excluded due

to age (,8 years, .90 years) incomplete data or non-Western-

European origin. The spirometry reference equations were

derived from 118’891 individuals consisting of 60’624 (51%)

females and 58’267 (49%) males. In total there were 18’211

(15.3%) children under the age of 18 years. The age distribution of

the study population is shown in Figure 1. The main character-

istics of the study population can be taken from Table 1. In adults

58.9% of the women and 43.8% of the men were never smokers.

All together 34.9% of the individuals under the age of 18 were

either active (19.9%) or passive smokers (14.9%). Of all

individuals, 66.3% where healthy, 6.8% had a common cold at

the time of the measurement, 17.0% had a lung disease and 9.8%

a non lung-related disease such as diabetes or heart disease.

Reference equation modelled with GAMLSS
The lung function parameters FEV1, FVC, PEF, MEF25,

MEF50, MEF75 were modelled with the Box-Cox power

exponential density distribution function (BCPE(m, s, n, t)). A
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PLOS ONE | www.plosone.org 2 January 2013 | Volume 8 | Issue 1 | e52619



truncated BCPE(m, s, n, t) function was used to model the lung

function parameter FEV1/FVC. The BCPE distribution was

necessary as it was not possible to renounce modelling the kurtosis

(when using e.g. the BCCG distribution) as this would worsen the

model fit and increases the BIC (GAIC) in the models for all

endpoints. Residual analyses based on worm plot were done in

order to identify model inadequacies and were performed

graphically for all models (Figures S1 and S2). A good model fit

was achieved as only about 1484 (1.21%) individuals were not on

the QQ-line. The BCPE(m, s, n, t) function gives a distribution

from which the 5th quantile can be predicted. This is the quantile

generally recommended for the lower limit of the normal range.

The reference values (5th quantile), according to the GAMLSS

model, can be calculated by the four functions in Table 2 and

transformed to z-scores as described by the formula 1 of reference

[10] (Figure S3).

Comparison between the four health groups
Our reference equations not only include information on age,

sex and height but also on health and smoking status. This allows

us to model the entire population and produce adaptable reference

equations, where smokers can be compared to a smoking

Figure 1. Age distribution of the reference population. A comparison with the age distribution of the Swiss population in 2011 is made.
doi:10.1371/journal.pone.0052619.g001
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population. To illustrate this concept, Figure 2 shows a graphical

representation of four different populations: ‘‘healthy/non-smok-

er’’ (54’488, 45.5%), ‘‘healthy/smoker’’ (36’760, 30.7%), ‘‘sick/

non-smoker’’ (17’127, 14.3%) and ‘‘sick/smoker’’ (11’391, 9.5%).

The biggest difference between these populations can be seen for

the 5th quantile which is generally used as the lower limit of

normal. Not surprisingly, the individuals with the highest

prediction values are the ‘‘healthy/non-smokers’’. The ‘‘sick’’

individuals have the lowest values. A mean difference of 0.33 litres

in men and 0.27 litres in women is seen between healthy/non-

smokers and sick/smokers.

Quantile Regression reference equation and comparison
with GAMLSS

As equations modelled with GAMLSS are complex and cannot

be implemented in every spirometer we developed reference

equations with quantile regression to increase the implementation

possibilities. However, residual analyses revealed a worse fit than

for the GAMLSS models for all endpoints (additional information

can be found in the supporting information online).

Sensitivity analysis
A sensitivity analysis was performed for the following variables:

Compulsory measurement in children. In 66.5% of all

children and adolescents spirometry was done in a compulsory

setting. No significant difference was seen when excluding children

measured in a volunteer setting.

Years of data collection. As the data was collected over a

period of 17 years we analysed a linear time trend but did not find

any significant difference over time.

Body Mass Index (BMI). Only marginal differences were

found when comparing the reference equations for BMI cut-of

values of ,25, 25–30 and .30 for adults and their equivalents for

children [22].

Common cold. Reference values for common cold alone

were only marginally different than reference values for healthy

individuals.

As only marginal differences were found in all sensitivity

analysis (data not shown) all individuals and years were included in

the final population.

Discussion

We developed spirometry reference equations for 8–90 year olds

from a very large, cross-sectional sample of a Central European

population.

‘‘Spirometry reference values are important for the interpreta-

tion of individual spirometry measurements and may influence

clinical decision making. Most published reference equations use

statistical methods that cannot adequately model the complexity of

age-dependent lung function [2] and very few span across all ages

[3] introducing discontinuities at the transition points with

potential clinical implications for individuals with chronic lung

diseases.’’

One exception are the recently published spirometry reference

equations by Stanojevic et al., developed with complex statistical

methods for individuals aged 4–80 years of age [8]. As their

reference equations were derived from 4 pooled datasets collected

in 4 different countries (USA, Canada, UK and Belgium) their

reference values can be generalized to other mixed populations

with similar ethnic backgrounds. The reference equations we

developed are complementary to theirs as they also span from

school age to old age and use similar statistical methods. However,

they are derived from a single Central European population with

homogenous local environmental factors and genetic background

and the data was collected using the same instruments and testing

procedures throughout the years. Nevertheless, both equations

result in similar values [8] (Figure 2: healthy non-smoker). In boys,

the peak lung function is reached at the age of 20 years with almost

4.5 l followed by an age-dependent decline to just under 2.75 l at

the age of 80 years. In girls, the peak lung function is reached at 19

years with 3.4 l followed by an age-dependent decline to 2 l at the

age of 80 years. The decline is initially less steep in the LuftiBus

population with 3.2 l at the age of 40 years compared to 3 l in the

Stanojevic reference equations.

Spirometry reference equations should be derived from a

population as similar to the population from which the patient

originates as possible [23]. However, most spirometry reference

equations are derived from healthy non-smoking individuals [3]

who are generally a small subsample and have higher reference

values than the general population [24]. Some authors have

therefore included smokers in their reference population when the

Table 1. Characteristics of the study population.

N = 118’891 Female n = 60’624 Male n = 58’267

Adults Children (,18) Adults Children (,18)

52’245 (100%) 8’379 (100%) 48’435 (100%) 9’832 (100%)

Age 50 (25) 14 (3) 47 (27) 15 (3)

Smoking:

Never-Smokers 30’753 (58.9%) 5’664 (67.6%) 21’207 (43.8%) 6’169 (62.7%)

Smokers/Ex- Smokers 18’419 (35.3%) 1’436 (17.1%) 25’769 (53.2%) 2’208 (22.5%)

Passive smokers 3’073 (5.9%) 1’279 (15.3%) 1’459 (3.0%) 1’455 (14.8%)

Health status:

Healthy 33’256 (63.7%) 5’628 (67.2%) 33’211 (68,6%) 6’770 (68.9%)

Common cold 2’610 (5.0%) 1’134 (13.5%) 3’040 (6.3%) 1’263 (12.8%)

Lung diseases 9’745 (18.7%) 1’479 (17.7%) 7’378 (15.2%) 1’652 (16.8%)

Other diseases 6’634 (12.7%) 138 (1.6%) 4’806 (9.9%) 147 (1.5%)

For age we reported medians and inter-quartile range (in brackets) since the distribution was skewed.
Other diseases include all non-lung diseases such as diabetes, heart diseases, etc.
doi:10.1371/journal.pone.0052619.t001
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smoking prevalence was high [25]. The statistical methods we used

permitted us to model the entire population while including

information on smoking and health status. This allows clinicians to

choose which reference values are most appropriate for a given

individual. Indeed, although in most situations reference values for

healthy-never-smokers will be used, reference values for healthy-

smokers might be more appropriate for certain patients when

tracking disease progression or assessing effectiveness of therapy

over time. By including information on disease the reference

equations allow a comparison between healthy and sick individ-

uals. As can be seen in Figure 2 our data confirm that individuals

with lung diseases have lower spirometry values than healthy

individuals. Even though individuals with common cold where

included in the ‘‘sick’’ group, they did not have significantly

different reference values than healthy individuals, suggesting as

recently published [24] that not all respiratory symptoms need to

be accounted for when performing spirometry in patients.

Practically, the reference values according to the GAMLSS

model can be calculated by the four functions in Table 2 and the

formula found in Figure S3 [10]. To begin with, the values age,

sex, and height of a person have to be known. Smoker and sick are

for the clinician to decide. If the clinician would like to compare a

person to a ‘‘healthy-non-smoker’’ population then ‘‘smoker’’ and

‘‘sick’’ should be set to zero. The values calculated with the Table 2

must then be inserted in the function found in Figure S3 from

where the quantiles can be calculated. However, since these are

complex algebraic equations, the reference values are best

obtained by using the statistical software package R where the

function ‘qBCPE’ implemented in the package ‘gamlss’ can be

used. R is a free language and environment for statistical

computing and graphics that can be downloaded from the

following internet site (http://www.r-project.org/). Additionally,

upon request, the authors will gladly provide the source code in R,

thus facilitating its implementation in spirometry devices.

To allow the reference equations to be implemented in a wide

range of spirometers we additionally developed reference equa-

tions with quantile regression [12,26,27] using the same endpoints

(Table S1). A comparison between GAMLSS and quantile

regression models was done in Figure S5. However, compared

to the GAMLSS models, residual analyses revealed a worse model

fit for all endpoints (Figure S1, S4). Therefore, while the GAMLSS

reference equations should be used whenever possible as they give

the most accurate reference values the quantile regression

equations can be implemented as an alternative.

The reference equations for 18–80 years old recently published

by Kuster et al [12] are derived from the same data set. However,

the two reference equations are not directly comparable. Indeed,

we included data spanning from school age to old age thus

modelling the growth spurt of puberty and the transition from

childhood to adulthood. The equations presented herein therefore

expand and complement the reference equations from Kuster at

al.

The ATS/ERS task force recommends that reference values be

derived from a ‘‘representative sample of healthy subjects in a

general population’’; but, alternatively, can also be derived from a

‘‘large group of volunteers, provided that criteria for normal

selection and proper distribution of anthropometric characteristics

are satisfied’’ [1]. Although the population visiting the ‘‘LuftiBus’’

consisted mostly of volunteers and was thus possibly motivated by

personal health concerns we believe that the ‘‘LuftiBus’’ popula-

tion can be considered a ‘‘large group of volunteers’’ representa-

tive of the Zurich population. First, in the course of the 18 years

Figure 2. Comparison between the four health groups. The lung function parameter FEV1 is compared between the four health groups at
ages between 8–90 years old. For this comparison only men of 175 cm and women of 165 cm were included. The 5th quantile indicates the lower
limit of normal for each group. FEV1: forced expiratory volume in one second. The four health groups are: healthy/non-smoker, healthy/smoker, sick/
non-smoker and sick/smoker.
doi:10.1371/journal.pone.0052619.g002
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the ‘‘LuftiBus’’ visited each village of the Zurich County and a

similar proportion of the population of each village is represented

in the dataset. Second, the age distribution of the ‘‘LuftiBus’’

dataset is similar to the age distribution of the Swiss population

apart from an over representation of teenagers [15]. Third, when

the ‘‘LuftiBus’’ was leased by schools whole classrooms were tested

which allowed us to perform a sensitivity analysis between the

children being tested in a compulsory or a voluntary setting. No

significant difference was found. Lastly, we excluded all ‘‘sick’’ and

‘‘smoking’’ individuals from our ‘‘healthy/non-smoking’’ reference

values, thus reducing possible biases caused by health concerns.

Lung function has been shown to be influenced by various

factors such as cohort effect [1], ethnicity [28] or BMI [29]. As

only marginal differences were found when performing sensitivity

analysis we did not exclude individuals or years tested but rather

considered them as part of our ‘‘general representative’’ popula-

tion.

We developed spirometry reference equations spanning from

school age to old age for a Central European population. The

equations were derived from a large general population and are

intended for every day clinical use as they can be implemented in

most clinical settings. Additionally they allow clinicians to choose

reference values depending on a given clinical situation.

Supporting Information

Supporting Information S1 Results S1; Quantile Regres-
sion reference equation and comparison with GAMLSS.
(DOC)

Table S1 Quantile regression reference equation.
(DOCX)

Figure S1 Residual plots for FEV1 from the GAMLSS
model. Residuals of FEV1 from the GAMLSS model using

BCPT are shown: (a) against fitted values of m (b) against each

person (c) kernel density estimate (d) normal QQ plot. The Figures

show that the model is adequately fitted as the plots are

homogenous, compact, well centred around the zero in the

density estimate plot and only about 1484 individuals are not on

the QQ-line. GAMLSS: Generalized Additive Models for

Location, Scale and Shape. BCPE: Box-Cox power exponential

density distribution function. FEV1: forced expiratory volume in

one second. m: mean.

(TIF)

Figure S2 Worm plot of the residuals of the GAMLSS
reference equation for FEV1. The worm plot shows that the

model is well fitted at every age. The top bar shows the 20 age

ranges tested (displayed in steps from 6 to 99 years). The 20

corresponding 20 QQ plots (quantile-quantile plots) are probabil-

ity plots, which is a graphical method for comparing the residuals

of the GAMLSS model. They read from bottom left to top right

and correspond to the 20 age ranges. GAMLSS: Generalized

Additive Models for Location, Scale and Shape. FEV1: forced

expiratory volume in one second.

(TIF)

Figure S3 Formula for calculating quantiles. Formule

taken from Rigby RA, Stasinopoulos DM (2004) Smooth centile

curves for skew and kurtotic data modelled using the Box-Cox

power exponential distribution. Stat Med 23: 3053–3076.

(TIF)

Figure S4 Residual plots for FEV1 for quantile regres-
sion. Residuals from the quantile regression model for the 50th

and the 5th quantile are shown. (a) against fitted values of m (b)

against each person (c) kernel density estimate (d) normal QQ plot.

The residuals show a slight skewed distribution which is

accentuated in the 5th quantile. This can be seen by the plots

being less centred and less compact, having individuals at 24 but

non at +4 in the density estimate plot and having less individuals

on the QQ-line. FEV1: forced expiratory volume in one second. m:

mean.

(TIF)

Figure S5 Comparison between the GAMLSS and
Quantile Regression reference equations. The lung

function parameter FEV1 is compared between the GAMLSS

and the Quantile Regression model between the ages of 8–90

years old. For this comparison only healthy non-smoking men of

175 cm and women of 165 cm were included. The 5th quantile

indicates the lower limit of normal for each group. GAMLSS:

Generalized Additive Models for Location, Scale and Shape.

Quantreg: quantile regression.

(TIF)
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