554 research outputs found
Changes in cocoa properties induced by the alkalization process: A review
[EN] Alkalization, also known as "Dutching," is an optional, but very useful, step taken in the production chain of cocoa to darken its color, modify its taste, and increase natural cocoa solubility. Over the years, various attempts have been made to design new and more effective alkalization methods. Moreover, different authors have attempted to elucidate the impact of alkalization on the physicochemical, nutritional, functional, microbiological, and sensory characteristics of alkalized cocoa. The aim of this review is to provide a clear guide about not only the conditions that can be applied to alkalize cocoa, but also the reported effects of alkalization on the nutritional, functional, microbiological, and sensory characteristics of cocoa. The first part of this review describes different cocoa alkalization systems and how they can be tuned to induce specific changes in cocoa properties. The second part is a holistic analysis of the effects of the alkalization process on different cocoa features, performed by emphasizing the biochemistry behind all these transformations.European Regional Development Fund, Grant/Award Number: Project RTC-2016-5241-2; Ministerio deEconomia y Competitividad, Grant/Award Number: Project RTC-2016-5241-2Valverde-Garcia, D.; Pérez-Esteve, É.; Barat Baviera, JM. (2020). Changes in cocoa properties induced by the alkalization process: A review. Comprehensive Reviews in Food Science and Food Safety. 19(4):2200-2221. https://doi.org/10.1111/1541-4337.12581S22002221194Ilesanmi Adeyeye, E. (2016). Proximate, Mineral And Antinutrient Compositions Of Natural Cocoa Cake, Cocoa Liquor And Alkalized Cocoa Powders. Journal of Advanced Pharmaceutical Science And Technology, 1(3), 12-28. doi:10.14302/issn.2328-0182.japst-15-855Ajandouz, E. H., Tchiakpe, L. S., Ore, F. D., Benajiba, A., & Puigserver, A. (2001). Effects of pH on Caramelization and Maillard Reaction Kinetics in Fructose-Lysine Model Systems. Journal of Food Science, 66(7), 926-931. doi:10.1111/j.1365-2621.2001.tb08213.xAndres-Lacueva, C., Monagas, M., Khan, N., Izquierdo-Pulido, M., Urpi-Sarda, M., Permanyer, J., & Lamuela-Raventós, R. M. (2008). Flavanol and Flavonol Contents of Cocoa Powder Products: Influence of the Manufacturing Process. Journal of Agricultural and Food Chemistry, 56(9), 3111-3117. doi:10.1021/jf0728754Andruszkiewicz, P. J., D’Souza, R. N., Altun, I., Corno, M., & Kuhnert, N. (2019). Thermally-induced formation of taste-active 2,5-diketopiperazines from short-chain peptide precursors in cocoa. Food Research International, 121, 217-228. doi:10.1016/j.foodres.2019.03.015Aprotosoaie, A. C., Luca, S. V., & Miron, A. (2015). Flavor Chemistry of Cocoa and Cocoa Products-An Overview. Comprehensive Reviews in Food Science and Food Safety, 15(1), 73-91. doi:10.1111/1541-4337.12180Aremu, C. Y., Agiang, M. A., & Ayatse, J. O. I. (1995). Nutrient and antinutrient profiles of raw and fermented cocoa beans. Plant Foods for Human Nutrition, 48(3), 217-223. doi:10.1007/bf01088443Bandi J. P. Kubicek K. &Raboud P. B.(1984).Installation for solubilizing cocoa. US4438681A.Baigrie, B. D. (1994). Cocoa flavour. Understanding Natural Flavors, 268-282. doi:10.1007/978-1-4615-2143-3_17Bartella, L., Di Donna, L., Napoli, A., Siciliano, C., Sindona, G., & Mazzotti, F. (2019). A rapid method for the assay of methylxanthines alkaloids: Theobromine, theophylline and caffeine, in cocoa products and drugs by paper spray tandem mass spectrometry. Food Chemistry, 278, 261-266. doi:10.1016/j.foodchem.2018.11.072Bauermeister J.(1989).Process for making cacao powder by disagglomeration and cacao powder granulate by subsequent agglomeration. EP0310790A2.Beg, M. S., Ahmad, S., Jan, K., & Bashir, K. (2017). Status, supply chain and processing of cocoa - A review. Trends in Food Science & Technology, 66, 108-116. doi:10.1016/j.tifs.2017.06.007Biehl B.(1986).Cocoa fermentation and problem of acidity over‐fermentation and low cocoa flavour.Selangor Malaysia: Incorporated Society of Planters.Serra Bonvehí, J., & Ventura Coll, F. (2000). Evaluation of purine alkaloids and diketopiperazines contents in processed cocoa powder. European Food Research and Technology, 210(3), 189-195. doi:10.1007/pl00005510Borthwick, A. D., & Da Costa, N. C. (2015). 2,5-diketopiperazines in food and beverages: Taste and bioactivity. Critical Reviews in Food Science and Nutrition, 57(4), 718-742. doi:10.1080/10408398.2014.911142Chalin M. L.(1972).Method of dutching cocoa. US3868469A.Rainer Cremer, D. (2000). The reaction kinetics for the formation of Strecker aldehydes in low moisture model systems and in plant powders. Food Chemistry, 71(1), 37-43. doi:10.1016/s0308-8146(00)00122-9De Vuyst, L., & Weckx, S. (2016). The cocoa bean fermentation process: from ecosystem analysis to starter culture development. Journal of Applied Microbiology, 121(1), 5-17. doi:10.1111/jam.13045Del Rio, D., Costa, L. G., Lean, M. E. J., & Crozier, A. (2010). Polyphenols and health: What compounds are involved? Nutrition, Metabolism and Cardiovascular Diseases, 20(1), 1-6. doi:10.1016/j.numecd.2009.05.015Domínguez-Rodríguez, G., Marina, M. L., & Plaza, M. (2017). Strategies for the extraction and analysis of non-extractable polyphenols from plants. Journal of Chromatography A, 1514, 1-15. doi:10.1016/j.chroma.2017.07.066El Gharras, H. (2009). Polyphenols: food sources, properties and applications - a review. International Journal of Food Science & Technology, 44(12), 2512-2518. doi:10.1111/j.1365-2621.2009.02077.xEllis L. D.(1990).Process for making dark cocoa. US5114730A.Ellis L. D. (1992).Process for making dark cocoa. US5114730A.Lu, F., Rodriguez-Garcia, J., Van Damme, I., Westwood, N. J., Shaw, L., Robinson, J. S., … Charalampopoulos, D. (2018). Valorisation strategies for cocoa pod husk and its fractions. Current Opinion in Green and Sustainable Chemistry, 14, 80-88. doi:10.1016/j.cogsc.2018.07.007Franco, R., Oñatibia-Astibia, A., & Martínez-Pinilla, E. (2013). Health Benefits of Methylxanthines in Cacao and Chocolate. Nutrients, 5(10), 4159-4173. doi:10.3390/nu5104159Germann, D., Stark, T. D., & Hofmann, T. (2019). Formation and Characterization of Polyphenol-Derived Red Chromophores. Enhancing the Color of Processed Cocoa Powders: Part 1. Journal of Agricultural and Food Chemistry, 67(16), 4632-4642. doi:10.1021/acs.jafc.9b01049Germann, D., Stark, T. D., & Hofmann, T. (2019). Formation and Characterization of Polyphenol-Derived Red Chromophores. Enhancing the Color of Processed Cocoa Powders: Part 2. Journal of Agricultural and Food Chemistry, 67(16), 4643-4651. doi:10.1021/acs.jafc.9b01050Gobert, J., & Glomb, M. A. (2009). Degradation of Glucose: Reinvestigation of Reactive α-Dicarbonyl Compounds†. Journal of Agricultural and Food Chemistry, 57(18), 8591-8597. doi:10.1021/jf9019085Gu, L., House, S. E., Wu, X., Ou, B., & Prior, R. L. (2006). Procyanidin and Catechin Contents and Antioxidant Capacity of Cocoa and Chocolate Products. Journal of Agricultural and Food Chemistry, 54(11), 4057-4061. doi:10.1021/jf060360rGültekin-Özgüven, M., Berktaş, I., & Özçelik, B. (2016). Change in stability of procyanidins, antioxidant capacity and in-vitro bioaccessibility during processing of cocoa powder from cocoa beans. LWT - Food Science and Technology, 72, 559-565. doi:10.1016/j.lwt.2016.04.065Hagerman, A. E. (1992). Tannin—Protein Interactions. Phenolic Compounds in Food and Their Effects on Health I, 236-247. doi:10.1021/bk-1992-0506.ch019Holkar, C. R., Jadhav, A. J., & Pinjari, D. V. (2019). A critical review on the possible remediation of sediment in cocoa/coffee flavored milk. Trends in Food Science & Technology, 86, 199-208. doi:10.1016/j.tifs.2019.02.035Huang, Y., & Barringer, S. A. (2010). Alkylpyrazines and Other Volatiles in Cocoa Liquors at pH 5 to 8, by Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS). Journal of Food Science, 75(1), C121-C127. doi:10.1111/j.1750-3841.2009.01455.xHurst, W. J., Krake, S. H., Bergmeier, S. C., Payne, M. J., Miller, K. B., & Stuart, D. A. (2011). Impact of fermentation, drying, roasting and Dutch processing on flavan-3-ol stereochemistry in cacao beans and cocoa ingredients. Chemistry Central Journal, 5(1). doi:10.1186/1752-153x-5-53International Cocoa Organization(2017).Annual report 2014/2015 Retrieved fromhttps://www.icco.org/about-us/international-cocoa-agreements/cat_view/1-annual-report.html.Mazor Jolić, S., Radojčić Redovniković, I., Marković, K., Ivanec Šipušić, Đ., & Delonga, K. (2011). Changes of phenolic compounds and antioxidant capacity in cocoa beans processing. International Journal of Food Science & Technology, 46(9), 1793-1800. doi:10.1111/j.1365-2621.2011.02670.xKofink, M., Papagiannopoulos, M., & Galensa, R. (2007). (-)-Catechin in Cocoa and Chocolate: Occurence and Analysis of an Atypical Flavan-3-ol Enantiomer. Molecules, 12(7), 1274-1288. doi:10.3390/12071274Kongor, J. E., Hinneh, M., de Walle, D. V., Afoakwa, E. O., Boeckx, P., & Dewettinck, K. (2016). Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile — A review. Food Research International, 82, 44-52. doi:10.1016/j.foodres.2016.01.012Kopp G. M. Hennen J. C. Seyller M. &Brandstetter B.(2010).Process for producing high flavour cocoa. EP2241190A1.Kruszewski, B., & Obiedziński, M. W. (2020). Impact of Raw Materials and Production Processes on Furan and Acrylamide Contents in Dark Chocolate. Journal of Agricultural and Food Chemistry, 68(8), 2562-2569. doi:10.1021/acs.jafc.0c00412Lan, X., Liu, P., Xia, S., Jia, C., Mukunzi, D., Zhang, X., … Xiao, Z. (2010). Temperature effect on the non-volatile compounds of Maillard reaction products derived from xylose–soybean peptide system: Further insights into thermal degradation and cross-linking. Food Chemistry, 120(4), 967-972. doi:10.1016/j.foodchem.2009.11.033Li, Y., Feng, Y., Zhu, S., Luo, C., Ma, J., & Zhong, F. (2012). The effect of alkalization on the bioactive and flavor related components in commercial cocoa powder. Journal of Food Composition and Analysis, 25(1), 17-23. doi:10.1016/j.jfca.2011.04.010Li, Y., Zhu, S., Feng, Y., Xu, F., Ma, J., & Zhong, F. (2013). Influence of alkalization treatment on the color quality and the total phenolic and anthocyanin contents in cocoa powder. Food Science and Biotechnology, 23(1), 59-63. doi:10.1007/s10068-014-0008-5Lima, L. J. R., Kamphuis, H. J., Nout, M. J. R., & Zwietering, M. H. (2011). Microbiota of cocoa powder with particular reference to aerobic thermoresistant spore-formers. Food Microbiology, 28(3), 573-582. doi:10.1016/j.fm.2010.11.011MALEYKI, M. J. A., & ISMAIL, A. (2010). ANTIOXIDANT PROPERTIES OF COCOA POWDER. Journal of Food Biochemistry, 34(1), 111-128. doi:10.1111/j.1745-4514.2009.00268.xMartín, M. Á., & Ramos, S. (2017). Health beneficial effects of cocoa phenolic compounds: a mini-review. Current Opinion in Food Science, 14, 20-25. doi:10.1016/j.cofs.2016.12.002Martin, M. A., Goya, L., & Ramos, S. (2013). Potential for preventive effects of cocoa and cocoa polyphenols in cancer. Food and Chemical Toxicology, 56, 336-351. doi:10.1016/j.fct.2013.02.020Méndez-Albores, A., De Jesús-Flores, F., Castañeda-Roldan, E., Arámbula-Villa, G., & Moreno-Martı́nez, E. (2004). The effect of toasting and boiling on the fate of B-aflatoxins during pinole preparation. Journal of Food Engineering, 65(4), 585-589. doi:10.1016/j.jfoodeng.2004.02.024Miller, K. B., Hurst, W. J., Payne, M. J., Stuart, D. A., Apgar, J., Sweigart, D. S., & Ou, B. (2008). Impact of Alkalization on the Antioxidant and Flavanol Content of Commercial Cocoa Powders. Journal of Agricultural and Food Chemistry, 56(18), 8527-8533. doi:10.1021/jf801670pOlam. (2017).The De Zaan cocoa manual. The Netherlands: Archer Daniels Midland Company BV.ODUNS, A. A., & LONGE, O. G. (1998). Nutritive value of hot water- or cocoa-pod ash solution-treated cocoa bean cake for broiler chicks. British Poultry Science, 39(4), 519-525. doi:10.1080/00071669888700Ofosu, I. W., Ankar-Brewoo, G. M., Lutterodt, H. E., Benefo, E. O., & Menyah, C. A. (2019). Estimated daily intake and risk of prevailing acrylamide content of alkalized roasted cocoa beans. Scientific African, 6, e00176. doi:10.1016/j.sciaf.2019.e00176Okiyama, D. C. G., Navarro, S. L. B., & Rodrigues, C. E. C. (2017). Cocoa shell and its compounds: Applications in the food industry. Trends in Food Science & Technology, 63, 103-112. doi:10.1016/j.tifs.2017.03.007Ortega, N., Romero, M.-P., Macià, A., Reguant, J., Anglès, N., Morelló, J.-R., & Motilva, M.-J. (2008). Obtention and Characterization of Phenolic Extracts from Different Cocoa Sources. Journal of Agricultural and Food Chemistry, 56(20), 9621-9627. doi:10.1021/jf8014415Pia, A. K. R., Pereira, A. P. M., Costa, R. A., Alvarenga, V. O., Freire, L., Carlin, F., & Sant’Ana, A. S. (2019). The fate of Bacillus cereus and Geobacillus stearothermophilus during alkalization of cocoa as affected by alkali concentration and use of pre-roasted nibs. Food Microbiology, 82, 99-106. doi:10.1016/j.fm.2019.01.009Quelal-Vásconez, M. A., Lerma-García, M. J., Pérez-Esteve, É., Arnau-Bonachera, A., Barat, J. M., & Talens, P. (2020). Changes in methylxanthines and flavanols during cocoa powder processing and their quantification by near-infrared spectroscopy. LWT, 117, 108598. doi:10.1016/j.lwt.2019.108598Quelal‐Vásconez, M. A., Lerma‐García, M. J., Pérez‐Esteve, É., Talens, P., & Barat, J. M. (2020). Roadmap of cocoa quality and authenticity control in the industry: A review of conventional and alternative methods. Comprehensive Reviews in Food Science and Food Safety, 19(2), 448-478. doi:10.1111/1541-4337.12522Razzaque, M. A., Saud, Z. A., Absar, N., Karim, M. R., & Hashinaga, F. (2000). Purification and Characterization of Polyphenoloxidase from Guava Infected with Fruit-rot Disease. Pakistan Journal of Biological Sciences, 3(3), 407-410. doi:10.3923/pjbs.2000.407.410Rimbach, G., Melchin, M., Moehring, J., & Wagner, A. (2009). Polyphenols from Cocoa and Vascular Health—A Critical Review. International Journal of Molecular Sciences, 10(10), 4290-4309. doi:10.3390/ijms10104290Rodríguez, P., Pérez, E., & Guzmán, R. (2009). Effect of the types and concentrations of alkali on the color of cocoa liquor. Journal of the Science of Food and Agriculture, 89(7), 1186-1194. doi:10.1002/jsfa.3573Saltini, R., Akkerman, R., & Frosch, S. (2013). Optimizing chocolate production through traceability: A review of the influence of farming practices on cocoa bean quality. Food Control, 29(1), 167-187. doi:10.1016/j.foodcont.2012.05.054Sarmadi, B., Aminuddin, F., Hamid, M., Saari, N., Abdul-Hamid, A., & Ismail, A. (2012). Hypoglycemic effects of cocoa (Theobroma cacao L.) autolysates. Food Chemistry, 134(2), 905-911. doi:10.1016/j.foodchem.2012.02.202Sarmadi, B., Ismail, A., & Hamid, M. (2011). Antioxidant and angiotensin converting enzyme (ACE) inhibitory activities of cocoa (Theobroma cacao L.) autolysates. Food Research International, 44(1), 290-296. doi:10.1016/j.foodres.2010.10.017Scalone, G. L. L., Textoris-Taube, K., De Meulenaer, B., De Kimpe, N., Wöstemeyer, J., & Voigt, J. (2019). Cocoa-specific flavor components and their peptide precursors. Food Research International, 123, 503-515. doi:10.1016/j.foodres.2019.05.019Schroder, T., Vanhanen, L., & Savage, G. P. (2011). Oxalate content in commercially produced cocoa and dark chocolate. Journal of Food Composition and Analysis, 24(7), 916-922. doi:10.1016/j.jfca.2011.03.008Shankar, M. U., Levitan, C. A., Prescott, J., & Spence, C. (2009). The Influence of Color and Label Information on Flavor Perception. Chemosensory Perception, 2(2), 53-58. doi:10.1007/s12078-009-9046-4Singh, P., Kesharwani, R. K., & Keservani, R. K. (2017). Antioxidants and Vitamins. Sustained Energy for Enhanced Human Functions and Activity, 385-407. doi:10.1016/b978-0-12-805413-0.00024-7Tanaka M. &Terauchi M.(1999).Cocoa powder rich in polyphenols process for producing the same and modified cocoa containing the same. US6485772B1.Taş, N. G., & Gökmen, V. (2016). Effect of alkalization on the Maillard reaction products formed in cocoa during roasting. Food Research International, 89, 930-936. doi:10.1016/j.foodres.2015.12.021Terink J. &Brandon M. J.(1981).Alkalized cocoa powders and foodstuffs containing such powders. US4435436A.Todorovic, V., Milenkovic, M., Vidovic, B., Todorovic, Z., & Sobajic, S. (2017). Correlation between Antimicrobial, Antioxidant Activity, and Polyphenols of Alkalized/Nonalkalized Cocoa Powders. Journal of Food Science, 82(4), 1020-1027. doi:10.1111/1750-3841.13672Tomas-Barberán, F. A., Cienfuegos-Jovellanos, E., Marín, A., Muguerza, B., Gil-Izquierdo, A., Cerdá, B., … Espín, J. C. (2007). A New Process To Develop a Cocoa Powder with Higher Flavonoid Monomer Content and Enhanced Bioavailability in Healthy Humans. Journal of Agricultural and Food Chemistry, 55(10), 3926-3935. doi:10.1021/jf070121jTotlani, V. M., & Peterson, D. G. (2005). Reactivity of Epicatechin in Aqueous Glycine and Glucose Maillard Reaction Models: Quenching of C2, C3, and C4 Sugar Fragments. Journal of Agricultural and Food Chemistry, 53(10), 4130-4135. doi:10.1021/jf050044xTotlani, V. M., & Peterson, D. G. (2006). Influence of Epicatechin Reactions on the Mechanisms of Maillard Product Formation in Low Moisture Model Systems. Journal of Agricultural and Food Chemistry, 55(2), 414-420. doi:10.1021/jf0617521Trout R. B.(2001).Method for making dutched cocoa. EP1278428B1.Turcotte, A.-M., Scott, P. M., & Tague, B. (2013). Analysis of cocoa products for ochratoxin A and aflatoxins. Mycotoxin Research, 29(3), 193-201. doi:10.1007/s12550-013-0167-xWang, R., Wang, T., Zheng, Q., Hu, X., Zhang, Y., & Liao, X. (2012). Effects of high hydrostatic pressure on color of spinach purée and related properties. Journal of the Science of Food and Agriculture, 92(7), 1417-1423. doi:10.1002/jsfa.4719Wiant M. J. William R. Lynch W. R. &LeFreniere R. C.(1989).Method for producing deep red and black cocoa. US5009917A.Wissgott U.(1988).Process of alkalization of cocoa in aqueous phase. US4784866A.Wollgast, J., & Anklam, E. (2000). Review on polyphenols in Theobroma cacao: changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Research International, 33(6), 423-447. doi:10.1016/s0963-9969(00)00068-5Zhang, L., Xia, Y., & Peterson, D. G. (2014). Identification of Bitter Modulating Maillard-Catechin Reaction Products. Journal of Agricultural and Food Chemistry, 62(33), 8470-8477. doi:10.1021/jf502040eZhu, Q. Y., Holt, R. R., Lazarus, S. A., Ensunsa, J. L., Hammerstone, J. F., Schmitz, H. H., & Keen, C. L. (2002). Stability of the Flavan-3-ols Epicatechin and Catechin and Related Dimeric Procyanidins Derived from Cocoa. Journal of Agricultural and Food Chemistry, 50(6), 1700-1705. doi:10.1021/jf011228
Mesenchymal Stem Cell Therapy Modulates the Inflammatory Response in Experimental Traumatic Brain Injury
Therapy with mesenchymal stem cells (MSCs) has showed to be promising due to its immunomodulatory function. Traumatic brain injury (TBI) triggers immune response and release of inflammatory mediators, mainly cytokines, by glial cells creating a hostile microenvironment for endogenous neural stem cells (NSCs). We investigated the effects of factors secreted by MSCs on NSC in vitro and analyzed cytokines expression in vitro in a TBI model. Our in vitro results show that MSC-secreted factors increase NSC proliferation and induce higher expression of GFAP, indicating a tendency toward differentiation into astrocytes. In vivo experiments showed that MSC injection at an acute model of brain injury diminishes a broad profile of cytokines in the tissue, suggesting that MSC-secreted factors may modulate the inflammation at the injury site, which may be of interest to the development of a favorable microenvironment for endogenous NSC and consequently to repair the injured tissue
Multiproxy analysis of permafrost preserved faeces provides an unprecedented insight into the diets and habitats of extinct and extant megafauna
The study of faecal samples to reconstruct the diets and habitats of extinct megafauna has traditionally relied on pollen and macrofossil analysis. DNA metabarcoding has emerged as a valuable tool to complement and refine these proxies. While published studies have compared the results of these three proxies for sediments, this comparison is currently lacking for permafrost preserved mammal faeces. Moreover, most metabarcoding studies have focused on a single plant-specific DNA marker region. In this study, we target both the commonly used chloroplast trnL P6 loop as well as nuclear ribosomal ITS (nrITS). The latter can increase taxonomic resolution of plant identifications but requires DNA to be relatively well preserved because of the target length (∼300–500 bp). We compare DNA results to pollen and macrofossil analyses from permafrost and ice-preserved faeces of Pleistocene and Holocene megafauna. Samples include woolly mammoth, horse, steppe bison as well as Holocene and extant caribou. Most plant identifications were found using DNA, likely because the studied faeces contained many vegetative remains that could not be identified using macrofossils or pollen. Several taxa were, however, identified to lower taxonomic levels uniquely with macrofossil and pollen analysis. The nrITS marker provides species level taxonomic resolution for commonly encountered plant families that are hard to distinguish using the other proxies (e.g. Asteraceae, Cyperaceae and Poaceae). Integrating the results from all proxies, we are able to accurately reconstruct known diets and habitats of the extant caribou. Applying this approach to the extinct mammals, we find that the Holocene horse and steppe bison were not strict grazers but mixed feeders living in a marshy wetland environment. The mammoths showed highly varying diets from different non-analogous habitats. This confirms the presence of a mosaic of habitats in the Pleistocene ‘mammoth steppe’ that mammoths could fully exploit due to their flexibility in food choice
Prototyping of petalets for the Phase-II Upgrade of the silicon strip tracking detector of the ATLAS Experiment
In the high luminosity era of the Large Hadron Collider, the HL-LHC, the
instantaneous luminosity is expected to reach unprecedented values, resulting
in about 200 proton-proton interactions in a typical bunch crossing. To cope
with the resultant increase in occupancy, bandwidth and radiation damage, the
ATLAS Inner Detector will be replaced by an all-silicon system, the Inner
Tracker (ITk). The ITk consists of a silicon pixel and a strip detector and
exploits the concept of modularity. Prototyping and testing of various strip
detector components has been carried out. This paper presents the developments
and results obtained with reduced-size structures equivalent to those foreseen
to be used in the forward region of the silicon strip detector. Referred to as
petalets, these structures are built around a composite sandwich with embedded
cooling pipes and electrical tapes for routing the signals and power. Detector
modules built using electronic flex boards and silicon strip sensors are glued
on both the front and back side surfaces of the carbon structure. Details are
given on the assembly, testing and evaluation of several petalets. Measurement
results of both mechanical and electrical quantities are shown. Moreover, an
outlook is given for improved prototyping plans for large structures.Comment: 22 pages for submission for Journal of Instrumentatio
Iron bioavailability in two commercial cultivars of wheat: a comparison between wholegrain and white flour and the effects of nicotianamine and 2'-deoxymugineic acid on iron uptake into Caco-2 cells
Iron bioavailability in unleavened white and wholegrain bread made from two commercial wheat varieties was assessed by measuring ferritin production in Caco-2 cells. The breads were subjected to simulated gastrointestinal digestion and the digests applied to the Caco-2 cells. Although Riband grain contained a lower iron concentration than Rialto, iron bioavailability was higher. No iron was taken up by the cells from white bread made from Rialto flour or from wholegrain bread from either variety, but Riband white bread produced a small ferritin response. The results probably relate to differences in phytate content of the breads, although iron in soluble monoferric phytate was demonstrated to be bioavailable in the cell model. Nicotianamine, an iron chelator in plants involved in iron transport, was a more potent enhancer of iron uptake into Caco-2 cells than ascorbic acid or 2'-deoxymugineic acid, another metal chelator present in plants
Systematic Review and Meta-Analysis of Randomized Clinical Trials in the Treatment of Human Brucellosis
BACKGROUND: Brucellosis is a persistent health problem in many developing countries throughout the world, and the search for simple and effective treatment continues to be of great importance. METHODS AND FINDINGS: A search was conducted in MEDLINE and in the Cochrane Central Register of Controlled Trials (CENTRAL). Clinical trials published from 1985 to present that assess different antimicrobial regimens in cases of documented acute uncomplicated human brucellosis were included. The primary outcomes were relapse, therapeutic failure, combined variable of relapse and therapeutic failure, and adverse effect rates. A meta-analysis with a fixed effect model was performed and odds ratio with 95% confidence intervals were calculated. A random effect model was used when significant heterogeneity between studies was verified. Comparison of combined doxycycline and rifampicin with a combination of doxycycline and streptomycin favors the latter regimen (OR = 3.17; CI95% = 2.05-4.91). There were no significant differences between combined doxycycline-streptomycin and combined doxycycline-gentamicin (OR = 1.89; CI95% = 0.81-4.39). Treatment with rifampicin and quinolones was similar to combined doxycycline-rifampicin (OR = 1.23; CI95% = 0.63-2.40). Only one study assessed triple therapy with aminoglycoside-doxycycline-rifampicin and only included patients with uncomplicated brucellosis. Thus this approach cannot be considered the therapy of choice until further studies have been performed. Combined doxycycline/co-trimoxazole or doxycycline monotherapy could represent a cost-effective alternative in certain patient groups, and further studies are needed in the future. CONCLUSIONS: Although the preferred treatment in uncomplicated human brucellosis is doxycycline-aminoglycoside combination, other treatments based on oral regimens or monotherapy should not be rejected until they are better studied. Triple therapy should not be considered the current treatment of choice
Taking the strain? Impact of glaucoma on patients' informal caregivers
Purpose: To estimate informal caregiver (ICG) strain in people from a glaucoma clinic.
Methods: Patients with glaucoma were consecutively identified from a single clinic in England for a cross-sectional postal survey. The sample was deliberately enriched with a number of patients designated as having advanced glaucoma (visual field [VF] mean deviation worse than -12 dB in both eyes). Patients were asked to identify an ICG who recorded a Modified Caregiver Strain Index (MCSI), a validated 13 item instrument scored on a scale of 0-26. Previous research has indicated mean MCSI to be >10 in Multiple Sclerosis and Parkinson’s disease. All participants gave a self-reported measure of general health (EQ5D).
Results: Responses from 105 patients (43% of those invited) were analysed; only 38 of the 105 named an ICG. Mean (95% confidence interval [CI]) MCSI was 2.4 (1.3, 3.6) and only three ICGs recorded a MCSI > 7. The percentage of patients with an ICG was much higher in patients with advanced VF loss (82%; 9/11) when compared to those with non-advanced VF loss (31%; 29/94; p=0.001). Mean (standard deviation) MCSI was considerably inflated in the advanced patients (5.6 [4.9] vs 1.5 [2.2] for non-advanced; p=0.040). Worsening VF and poorer self-reported general health (EQ5D) of the patient were associated with worsening MCSI.
Conclusion: ICG strain, as measured by MCSI, for patients with non-advanced glaucoma is negligible, compared to other chronic disease. ICG strain increases moderately with worsening VFs but this could be partly explained by worse general health in our sample of patients
Control of Tungiasis through Intermittent Application of a Plant-Based Repellent: An Intervention Study in a Resource-Poor Community in Brazil
Tungiasis is a parasitic skin disease caused by the female sand flea Tunga penetrans. The disease is frequent in resource-poor communities in South America and sub-Saharan Africa and affects the poorest of the poor. Sand flea disease is associated with a considerable morbidity and may lead to tetanus in non-vaccinated individuals. The degree of morbidity depends on the intensity of infestation, i.e., the number of embedded sand fleas a person has. Since tungiasis is a zoonosis involving a host of animal reservoirs, and because an effective treatment is not at hand, in resource-poor settings elimination is not feasible. Preventing morbidity to develop is therefore the only means to protect exposed individuals from sand flea disease. Similar to other arthropods, sand fleas can be repelled before they penetrate into the skin. In this study we show that the intermittent application of a plant-based repellent, of which the major component is coconut oil, reduces the intensity of infestation dramatically during the whole transmission season and prevents tungiasis-associated morbidity from developing. The prevention can be performed at the household level by the affected individuals themselves with minimal input from the health sector
Defining strawberry shape uniformity using 3D imaging and genetic mapping
Strawberry shape uniformity is a complex trait, influenced by multiple genetic and environmental components. To complicate matters further, the phenotypic assessment of strawberry uniformity is confounded by the difficulty of quantifying geometric parameters ‘by eye’ and variation between assessors. An in-depth genetic analysis of strawberry uniformity has not been undertaken to date, due to the lack of accurate and objective data. Nonetheless, uniformity remains one of the most important fruit quality selection criteria for the development of a new variety. In this study, a 3D-imaging approach was developed to characterise berry shape uniformity. We show that circularity of the maximum circumference had the closest predictive relationship with the manual uniformity score. Combining five or six automated metrics provided the best predictive model, indicating that human assessment of uniformity is highly complex. Furthermore, visual assessment of strawberry fruit quality in a multi-parental QTL mapping population has allowed the identification of genetic components controlling uniformity. A “regular shape” QTL was identified and found to be associated with three uniformity metrics. The QTL was present across a wide array of germplasm, indicating a potential candidate for marker-assisted breeding, while the potential to implement genomic selection is explored. A greater understanding of berry uniformity has been achieved through the study of the relative impact of automated metrics on human perceived uniformity. Furthermore, the comprehensive definition of strawberry shape uniformity using 3D imaging tools has allowed precision phenotyping, which has improved the accuracy of trait quantification and unlocked the ability to accurately select for uniform berries
- …