213 research outputs found

    Bone Marrow Concentrate in the Treatment of Aneurysmal Bone Cysts: A Case Series Study

    Get PDF
    Introduction. A recent attractive option regarding mesenchymal stem cells (MSC) application is the treatment of bone cystic lesions and in particular aneurysmal bone cysts (ABC), in order to stimulate intrinsic healing. We performed a retrospective evaluation of the results obtained at our institution.Methods. The study group consisted of 46 cases with an average follow-up of 33 months. Forty-two patients underwent percutaneous treatment as the first approach; four patients had curettage as first treatment. In all cases, autologous bone marrow concentrate (BMC) was associated too. The healing status was followed up through a plain radiograph 45 days and 2 months after the procedure.Results and Conclusions.At the final follow-up, thirty-six patients healed with a Neer type II aspect, nine healed with a type I aspect, and one patient was not classified having total hip arthroplasty. Bone marrow concentrate is easy to obtain and to manipulate and can be immediately available in a clinical setting. We can assert that the use of BMC must be encouraged being harmless and having an unquestionable high osteogenic and healing potential in bone def

    New constraints on the origin of the ophiolitic rocks within sinorogenic turbiditic sequences at Cilento region (southern Italy)

    Get PDF
    Mafic igneous rocks (pillow lavas and gabbros) embedded as olistoliths within Miocene turbiditic sequences crop out in the Cilento area at the Mount Centaurino (Campania region, Southern Italy). The concentration of major oxides, as well as trace element ratios (Nb/Yb, Nb/Ta, Th/Nb) and the chondrite-normalized Rare Earth Elements (REE) patterns suggest a tholeiitic character with Mid Oceanic Ridge Basalts (MORB) affinity. The chemical composition of pillow lavas is consistent with magmas generated by 10% degrees of non-modal fractional partial melting, of a spinel-bearing MORB-type asthenospheric mantle. Regarding gabbros, the calculated composition of parental melts in equilibrium with the clinopyroxenes show a wide compositional range, and there are very different from the pillow basalts of the Mount Centaurino, suggesting that the clinopyroxenes might have derived from more evolved melts compared to those that produced the basalts. The origin of these olistoliths is not yet understood. Here we suggest that these rocks represent fragment of a dismantled accretionary wedge embedded during the deposition of the Cilento group sedimentary successions in a thrust top basin

    Spatial patterns of gray and white matter compromise relate to age of seizure onset in temporal lobe epilepsy

    Get PDF
    Objective: Temporal Lobe Epilepsy (TLE) is frequently a neurodevelopmental disorder, involving subcortical volume loss, cortical atrophy, and white matter (WM) disruption. However, few studies have addressed how these pathological changes in TLE relate to one another. In this study, we investigate spatial patterns of gray and white matter degeneration in TLE and evaluate the hypothesis that the relationship among these patterns varies as a function of the age at which seizures begin. Methods: Eighty-two patients with TLE and 59 healthy controls were enrolled. T1-weighted images were used to obtain hippocampal volumes and cortical thickness estimates. Diffusion-weighted imaging was used to obtain fractional anisotropy (FA) and mean diffusivity (MD) of the superficial WM (SWM) and deep WM tracts. Analysis of covariance was used to examine patterns of WM and gray matter alterations in TLE relative to controls, controlling for age and sex. Sliding window correlations were then performed to examine the relationships between SWM degeneration, cortical thinning, and hippocampal atrophy across ages of seizure onset. Results: Cortical thinning in TLE followed a widespread, bilateral pattern that was pronounced in posterior centroparietal regions, whereas SWM and deep WM loss occurred mostly in ipsilateral, temporolimbic regions compared to controls. Window correlations revealed a relationship between hippocampal volume loss and whole brain SWM disruption in patients who developed epilepsy during childhood. On the other hand, in patients with adult-onset TLE, co-occurring cortical and SWM alterations were observed in the medial temporal lobe ipsilateral to the seizure focus. Significance: Our results suggest that although cortical, hippocampal and WM alterations appear spatially discordant at the group level, the relationship among these features depends on the age at which seizures begin. Whereas neurodevelopmental aspects of TLE may result in co-occurring WM and hippocampal degeneration near the epileptogenic zone, the onset of seizures in adulthood may set off a cascade of SWM microstructural loss and cortical atrophy of a neurodegenerative nature

    The Holocene volcanism at El Hierro: insights from petrology and geochemistry

    Get PDF
    The Holocene volcanism at El Hierro consists of basaltic monogenetic volcanic fields associated with o the three rift systems present in this island. In this work we report preliminary petrological and geochemical data of Holocene lava flows belonging to the WNW-striking rift. Sampling was focused in three zones: Orchilla, Verodal-Sabinosa, and Tanganasoga. Petrography of the studied lavas shows that they are homogeneous. All samples are porphyritic with macrocrysts of clinopyroxene and olivine immersed in a groundmass formed by microcrysts of plagioclase, Fe-Ti oxides and clinopyroxene. Clinopyroxenes are diopsides, olivines have forsterite contents ranging from 74 to 84 % and anorthite in plagioclase varies from 66 to 76% (labradorite). Whole-rock geochemical results evidence that all magmas are basic in composition, ranging from picrobasalts to phonotephrites. Major, trace elements and isotope suppor fractional crystallization as the main process of magma evolution. However, petrography and chemistry of clinopyroxene cores agree with a xenocrystic nature of some of them. We suggest that these clinopyroxene cores crystallized from a genetically related magma and subsequently were entrapped o cannibalized by the basic rising magmas

    Submucosal Tunnel Endoscopic Resection of Gastric Lesion Before Obesity Surgery: a Case Series

    Get PDF
    Background: Submucosal tumors (SMTs) of the gastrointestinal tract are a rare pathological entity comprising a wide variety of neoplastic and non-neoplastic lesions. Even if most SMTs are benign tumors (e.g., leiomyomas), a smaller portion may have a malignant potential (e.g., gastrointestinal stromal tumor (GIST)). Preoperative diagnosis of SMT in bariatric patients may arise challenging clinical dilemmas. Long-term surveillance may be difficult after bariatric surgery. Moreover, according to SMT location, its presence may interfere with planned surgery. Submucosal tunneling endoscopic resection (STER) has emerged as an effective approach for minimally invasive en bloc excision of SMTs. This is the first case series of STER for SMTs before bariatric surgery. Methods: Seven female patients underwent STER for removal of SMTs before bariatric surgery. All lesions were incidentally diagnosed at preoperative endoscopy. STER procedural steps comprised mucosal incision, submucosal tunneling, lesion enucleation, and closure of mucosal defect. Results: En bloc removal of SMT was achieved in all cases. Mean procedural time was of 45 min (SD 18.6). No adverse event occurred. Mean size of the lesions was 20.6 mm (SD 5.8). Histological diagnoses were 5 leyomiomas, 1 lipoma, and 1 low grade GIST. Bariatric procedure was performed after a mean period of 4.1 months (SD 1.6) from endoscopic resection. Conclusion: STER is a safe and effective treatment for the management of SMT even in bariatric patients awaiting surgery. Preoperative endoscopic resection of SMTs has the advantages of reducing the need for surveillance and removing lesions that could interfere with planned surgery. STER did not altered accomplishment of bariatric procedures

    Endoscopic internal drainage for the management of leak, fistula, and collection after sleeve gastrectomy: our experience in 617 consecutive patients

    Get PDF
    Background: Endoscopy plays a pivotal role in the management of adverse events (AE) following bariatric surgery. Leaks, fistulae, and post-operative collection after sleeve gastrectomy (SG) may occur in up to 10% of cases. Objectives: To evaluate the efficacy and safety of endoscopic internal drainage (EID) for the management of leak, fistula, and collection following SG. Setting: Retrospective, observational, single center study on patients referred from several bariatric surgery departments to an endoscopic referral center. Methods: EID was used as first-line treatment for the management of leaks, fistulae, and collections. Leaks and fistulae were treated with double pigtail stent (DPS) deployment in order to guarantee internal drainage and second intention cavity obliteration. Collections were treated with endoscropic ultrasound (EUS)–guided deployment of DPS or lumen apposing metal stents. Results: A total of 617 patients (83.3% female; mean age, 43.1 yr) were enrolled in the study for leak (n = 300, 48.6%), fistula (n = 285, 46.2%), and collection (n = 32, 5.2%). Median follow-up was 19.5 months. Overall clinical success was 84.7% whereas 15.3% of cases required revisional surgery after EID failure. Clinical success according to type of AE was 89.5%, 78.5%, and 90% for leak, fistula, and collection, respectively. A total of 10 of 547 (1.8%) presented a recurrence during follow-up. A total of 28 (4.5%) AE related to the endoscopic treatment occurred. At univariate logistic regression predictors of failure were: fistula (OR 2.012), combined endoscopic approach (OR 2.319), need for emergency surgery (OR 1.755), and previous endoscopic treatment (OR 4.818). Conclusion: Early EID for the management of leak, fistula, and post-operative collection after SG seems a safe and effective first-line approach with good long-term results

    Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1038/nature20136The West Antarctic Ice Sheet is one of the largest potential sources of rising sea levels. Over the past 40 years, glaciers flowing into the Amundsen Sea sector of the ice sheet have thinned at an accelerating rate, and several numerical models suggest that unstable and irreversible retreat of the grounding line—which marks the boundary between grounded ice and floating ice shelf—is underway. Understanding this recent retreat requires a detailed knowledge of grounding-line history, but the locations of the grounding line before the advent of satellite monitoring in the 1990s are poorly dated. In particular, a history of grounding-line retreat is required to understand the relative roles of contemporaneous ocean-forced change and of ongoing glacier response to an earlier perturbation in driving ice-sheet loss. Here we show that the present thinning and retreat of Pine Island Glacier in West Antarctica is part of a climatically forced trend that was triggered in the 1940s. Our conclusions arise from analysis of sediment cores recovered beneath the floating Pine Island Glacier ice shelf, and constrain the date at which the grounding line retreated from a prominent seafloor ridge. We find that incursion of marine water beyond the crest of this ridge, forming an ocean cavity beneath the ice shelf, occurred in 1945 (±12 years); final ungrounding of the ice shelf from the ridge occurred in 1970 (±4 years). The initial opening of this ocean cavity followed a period of strong warming of West Antarctica, associated with El Niño activity. Furthermore our results suggest that, even when climate forcing weakened, ice-sheet retreat continued.USDO

    From harmful Microcystis blooms to multi-functional core-double-shell microsphere bio-hydrochar materials

    Get PDF
    Harmful algal blooms (HABs) induced by eutrophication is becoming a serious global environmental problem affecting public health and aquatic ecological sustainability. A novel strategy for the utilization of biomass from HABs was developed by converting the algae cells into hollow mesoporous biohydrochar microspheres via hydrothermal carbonization method. The hollow microspheres were used as microreactors and carriers for constructing CaO2 core-mesoporous shell-CaO2 shell microspheres (OCRMs). The CaO2 shells could quickly increase dissolved oxygen to extremely anaerobic water in the initial 40 min until the CaO2 shells were consumed. The mesoporous shells continued to act as regulators restricting the release of oxygen from CaO2 cores. The oxygen-release time using OCRMs was 7 times longer than when directly using CaO2. More interestingly, OCRMs presented a high phosphate removal efficiency (95.6%) and prevented the pH of the solution from rising to high levels in comparison with directly adding CaO2 due to the OH− controlled-release effect of OCRMs. The distinct core-doubleshell micro/nanostructure endowed the OCRMs with triple functions for oxygen controlled-release, phosphorus removal and less impact on water pH. The study is to explore the possibility to prepare smarter bio-hydrochar materials by utilizing algal blooms
    corecore