5 research outputs found

    Carbohydrate effect of novel arene Ru(II) phenanthroline-glycoconjugates on metastatic biological processes

    Get PDF
    Novel water-soluble half-sandwich ruthenium(II) polypyridyl-glycoconjugates [Ru(p-cymene)Cl{N-(1,10-phenanthroline-5-yl)-& beta;-glycopyranosylamine}][Cl] (glycopyranosyl = D-glucopyranosyl (1), D-mannopyranosyl (2), L-rhamnopyranosyl (3) and L-xylopyranosyl (4)) have been synthesized and fully characterized. Their behaviour in water under physiological conditions has been studied by nuclear magnetic resonance spectroscopy, revealing their hydrolytic stability. Interactions of the novel compounds with duplex-deoxiribonucleic acid (dsDNA) were investigated by different techniques and the results indicate that, under physiological pH and saline conditions, the metal glycoconjugates bind DNA in the minor groove and/or through external, electrostatic interactions, and by a non-classical, partial intercalation mechanism in non-saline phosphate buffered solution. Effects of compounds 1-4 on cell viability have been assessed in vitro against two human cell lines (androgen-independent prostate cancer PC-3 and non-tumorigenic prostate RWPE-1), showing moderate cytotoxicities, with IC50 values higher than those found for free ligands [N-(1,10-phenanthroline-5-yl)-& beta;-glycopyranosylamine] (glycopyranosyl = D-glucopyranosyl (a), D-mannopyranosyl (b), L-rhamnopyranosyl (c) and L-xylopyranosyl (d)) or corresponding metal-aglycone. Cell viability was assayed in the presence and absence of the glucose transporters (GLUTs) inhibitor [N4-{1-(4-cyanobenzyl)-5-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl}-7-fluoroquinoline-2,4dicarboxamide] (BAY-876), and the results point to a negligible impact of the inhibition of GLUTs on the cytotoxicity caused by Ru(II) compounds 1-4. Remarkably, glycoconjugates 1-4 potently affect the migration pattern of PC-3 cells, and the wound healing assay evidence that the presence of the carbohydrate and the Ru(II) center is a requisite for the anti-migratory activity observed in these novel derivatives. In addition, derivatives 1-4 strongly affect the matrix metalloproteinase MMP-9 activities of PC-3 cells, while proMMP-2 and especially proMMP-9 were influenced to a much lesser extent

    Inborn errors of OAS–RNase L in SARS-CoV-2–related multisystem inflammatory syndrome in children

    No full text
    International audienceMultisystem inflammatory syndrome in children (MIS-C) is a rare and severe condition that follows benign COVID-19. We report autosomal recessive deficiencies of OAS1 , OAS2 , or RNASEL in five unrelated children with MIS-C. The cytosolic double-stranded RNA (dsRNA)–sensing OAS1 and OAS2 generate 2â€Č-5â€Č-linked oligoadenylates (2-5A) that activate the single-stranded RNA–degrading ribonuclease L (RNase L). Monocytic cell lines and primary myeloid cells with OAS1, OAS2, or RNase L deficiencies produce excessive amounts of inflammatory cytokines upon dsRNA or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stimulation. Exogenous 2-5A suppresses cytokine production in OAS1-deficient but not RNase L–deficient cells. Cytokine production in RNase L–deficient cells is impaired by MDA5 or RIG-I deficiency and abolished by mitochondrial antiviral-signaling protein (MAVS) deficiency. Recessive OAS–RNase L deficiencies in these patients unleash the production of SARS-CoV-2–triggered, MAVS-mediated inflammatory cytokines by mononuclear phagocytes, thereby underlying MIS-C

    The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies

    No full text
    International audienceSignificance There is growing evidence that preexisting autoantibodies neutralizing type I interferons (IFNs) are strong determinants of life-threatening COVID-19 pneumonia. It is important to estimate their quantitative impact on COVID-19 mortality upon SARS-CoV-2 infection, by age and sex, as both the prevalence of these autoantibodies and the risk of COVID-19 death increase with age and are higher in men. Using an unvaccinated sample of 1,261 deceased patients and 34,159 individuals from the general population, we found that autoantibodies against type I IFNs strongly increased the SARS-CoV-2 infection fatality rate at all ages, in both men and women. Autoantibodies against type I IFNs are strong and common predictors of life-threatening COVID-19. Testing for these autoantibodies should be considered in the general population

    The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies

    No full text
    International audienceSignificance There is growing evidence that preexisting autoantibodies neutralizing type I interferons (IFNs) are strong determinants of life-threatening COVID-19 pneumonia. It is important to estimate their quantitative impact on COVID-19 mortality upon SARS-CoV-2 infection, by age and sex, as both the prevalence of these autoantibodies and the risk of COVID-19 death increase with age and are higher in men. Using an unvaccinated sample of 1,261 deceased patients and 34,159 individuals from the general population, we found that autoantibodies against type I IFNs strongly increased the SARS-CoV-2 infection fatality rate at all ages, in both men and women. Autoantibodies against type I IFNs are strong and common predictors of life-threatening COVID-19. Testing for these autoantibodies should be considered in the general population
    corecore