21 research outputs found

    Molecular characterization of Listeria monocytogenes isolates from a small-scale meat processor in Montenegro, 2011-2014

    Get PDF
    The presence of Listeria monocytogenes was evaluated in a small-scale meat processing facility in Montenegro during 2011-2014. L. monocytogenes isolates from traditional meat products and environmental swabs were subjected to a) molecular characterization b) serotyping by both multiplex PCR and next generation sequencing (NGS) c) potential antimicrobial resistance (AMR) was assessed by extraction of specific genes from NGS data and d) screening for the presence of some disinfectant resistance markers. Overall, traditional meat products were contaminated, most likely from incoming raw materials, with 4 major specific STs of L. monocytogenes (ST515, ST8, ST21, ST121) representing 4 clonal complexes (CC1, CC8, CC21, CC121) identified during the four-year period. These strains belonged to serogroup IIa which predominated, followed by IVb (ST515, CC1). The strains from environmental swabs belonged, exclusively, to ST21 and were isolated from cutting board and floor swabs in 2011. Furthermore, we found Tn6188, a novel transposon conferring tolerance to BC, to be specific to sequence type ST121. In addition, antimicrobial resistance genes mprF and fosX were present in clonal complexes CC21 and CC121, while complexes CC8 and CC1 exclusively harbored the mprF antimicrobial resistance gene.This is the peer-reviewed version of the article: Zuber, I.; Lakićević, B.; Pietzka, A.; Milanov, D.; Đorđević, V.; Karabasil, N.; Teodorović, V.; Ruppitsch, W.; Dimitrijević, M. Molecular Characterization of Listeria Monocytogenes Isolates from a Small-Scale Meat Processor in Montenegro, 2011-2014. Food Microbiology 2019, 79, 116–122. [https://doi.org/10.1016/j.fm.2018.12.005

    Wholegenome sequencing as the gold standard approach for control of Listeria monocytogenes in the food chain

    No full text
    Listeria monocytogenes has been implicated in numerous outbreaks and related deaths of listeriosis. In food production, L. monocytogenes occurs in raw food material and above all, through postprocessing contamination. The use of next-generation sequencing technologies such as whole-genome sequencing (WGS) facilitates foodborne outbreak investigations, pathogen source tracking and tracing geographic distributions of different clonal complexes, routine microbiological/epidemiological surveillance of listeriosis, and quantitative microbial risk assessment. WGS can also be used to predict various genetic traits related to virulence, stress, or antimicrobial resistance, which can be of great benefit for improving food safety management as well as public health

    Retrospective validation of whole genome sequencing-enhanced surveillance of listeriosis in Europe, 2010 to 2015

    Get PDF
    Background and aim: The trend in reported case counts of invasive Listeria monocytogenes (Lm), a potentially severe food-borne disease, has been increasing since 2008. In 2015, 2,224 cases were reported in the European Union/European Economic Area (EU/EEA). We aimed to validate the microbiological and epidemiological aspects of an envisaged EU/EEA-wide surveillance system enhanced by routine whole genome sequencing (WGS). Methods: WGS and core genome multilocus sequence typing (cgMLST) were performed on isolates from 2,726 cases from 27 EU/EEA countries from 2010–15. Results: Quality controls for contamination, mixed Lm cultures and sequence quality classified nearly all isolates with a minimum average coverage of the genome of 55x as acceptable for analysis. Assessment of the cgMLST variation between six different pipelines revealed slightly less variation associated with assembly-based analysis compared to reads-based analysis. Epidemiological concordance, based on 152 isolates from 19 confirmed outbreaks and a cluster cutoff of seven allelic differences, was good (sensitivity > 95% for two cgMLST schemes of 1,748 and 1,701 loci each; PPV 58‒68%). The proportion of sporadic cases was slightly below 50%. Of remaining isolates, around one third were in clusters involving more than one country, often spanning several years. Detection of multi-country clusters was on average several months earlier when pooling the data at EU/EEA level, compared with first detection at national level. Conclusions: These findings provide a good basis for comprehensive EU/EEA-wide, WGS-enhanced surveillance of listeriosis. Time limits should not be used for hypothesis generation during outbreak investigations, but should be for analytical studies.Peer Reviewe

    A Listeria monocytogenes ST2 clone lacking chitinase ChiB from an outbreak of non-invasive gastroenteritis

    Get PDF
    An outbreak with a remarkable Listeria monocytogenes clone causing 163 cases of non-invasive listeriosis occurred in Germany in 2015. Core genome multi locus sequence typing grouped non-invasive outbreak isolates and isolates obtained from related food samples into a single cluster, but clearly separated genetically close isolates obtained from invasive listeriosis cases. A comparative genomic approach identified a premature stop codon in the chiB gene, encoding one of the two L. monocytogenes chitinases, which clustered with disease outcome. Correction of this premature stop codon in one representative gastroenteritis outbreak isolate restored chitinase production, but effects in infection experiments were not found. While the exact role of chitinases in virulence of L. monocytogenes is still not fully understood, our results now clearly show that ChiB-derived activity is not required to establish L. monocytogenes gastroenteritis in humans. This limits a possible role of ChiB in human listeriosis to later steps of the infection.Peer Reviewe

    Virulence characterization and comparative genomics of Listeria monocytogenes sequence type 155 strains

    Get PDF
    Background Listeria (L.) monocytogenes strains show a high diversity regarding stress tolerance and virulence potential. Genome studies have mainly focused on specific sequence types (STs) predominantly associated with either food or human listeriosis. This study focused on the prevalent ST155, showing equal distribution among clinical and food isolates. We evaluated the virulence potential of 20 ST155 strains and performed comparative genomic analysis of 130 ST155 strains isolated from food, food processing environments and human listeriosis cases in different countries and years. Results The in vitro virulence assays using human intestinal epithelial Caco2 and hepatocytic HEPG2 cells showed an impaired virulence phenotype for six of the 20 selected ST155 strains. Genome analysis revealed no distinct clustering of strains from the same source category (food, food processing environment, and clinical isolates). All strains harbored an intact inlA and inlB locus, except four strains, which had an internal deletion in the inlA gene. All strains harbored LIPI-1, but prfA was present in a longer variant in six strains, all showing impaired virulence. The longer PrfA variant resulted in lower expression of inlA, inlB, and prfA, and no expression of hly and actA. Regarding stress-related gene content, SSI-1 was present, whereas qacH was absent in all strains. 34.6% of the strains harbored a plasmid. All but one ST155 plasmids showed high conservation and harbored cadA2, bcrABC, and a triphenylmethane reductase. Conclusions This study contributes to an enhanced understanding of L. monocytogenes ST155 strains, being equally distributed among isolates from humans, food, and food processing environments. The conservation of the present genetic traits and the absence of unique inherent genetic features makes these types of STs especially interesting since they are apparently equally adapted to the conditions in food processing environments, as well as in food as to the human host environment. However, a ST155-specific mutation resulting in a longer PrfA variant impaired the virulence potential of several ST155 strains.publishedVersio

    Virulence characterization and comparative genomics of Listeria monocytogenes sequence type 155 strains

    No full text
    Background: Listeria (L.) monocytogenes strains show a high diversity regarding stress tolerance and virulence potential. Genome studies have mainly focused on specific sequence types (STs) predominantly associated with either food or human listeriosis. This study focused on the prevalent ST155, showing equal distribution among clinical and food isolates. We evaluated the virulence potential of 20 ST155 strains and performed comparative genomic analysis of 130 ST155 strains isolated from food, food processing environments and human listeriosis cases in different countries and years. Results: The in vitro virulence assays using human intestinal epithelial Caco2 and hepatocytic HEPG2 cells showed an impaired virulence phenotype for six of the 20 selected ST155 strains. Genome analysis revealed no distinct clustering of strains from the same source category (food, food processing environment, and clinical isolates). All strains harbored an intact inlA and inlB locus, except four strains, which had an internal deletion in the inlA gene. All strains harbored LIPI-1, but prfA was present in a longer variant in six strains, all showing impaired virulence. The longer PrfA variant resulted in lower expression of inlA, inlB, and prfA, and no expression of hly and actA. Regarding stress-related gene content, SSI-1 was present, whereas qacH was absent in all strains. 34.6% of the strains harbored a plasmid. All but one ST155 plasmids showed high conservation and harbored cadA2, bcrABC, and a triphenylmethane reductase. Conclusions: This study contributes to an enhanced understanding of L. monocytogenes ST155 strains, being equally distributed among isolates from humans, food, and food processing environments. The conservation of the present genetic traits and the absence of unique inherent genetic features makes these types of STs especially interesting since they are apparently equally adapted to the conditions in food processing environments, as well as in food as to the human host environment. However, a ST155-specific mutation resulting in a longer PrfA variant impaired the virulence potential of several ST155 strains.This article is published as Wagner, E., Zaiser, A., Leitner, R. et al. Virulence characterization and comparative genomics of Listeria monocytogenes sequence type 155 strains. BMC Genomics 21, 847 (2020). doi: 10.1186/s12864-020-07263-w.</p
    corecore