11 research outputs found

    Climate Change Promotes the Emergence of Serious Disease Outbreaks of Filarioid Nematodes

    Get PDF
    Filarioid parasites represent major health hazards with important medical, veterinary, and economic implications, and considerable potential to affect the everyday lives of tens of millions of people globally (World Health Organization, 2007). Scenarios for climate change vary latitudinally and regionally and involve direct and indirect linkages for increasing temperature and the dissemination, amplification, and invasiveness of vector-borne parasites. High latitude regions are especially influenced by global climate change and thus may be prone to altered associations and dynamics for complex host-pathogen assemblages and emergence of disease with cascading effects on ecosystem structure. Although the potential for substantial ecological perturbation has been identified, few empirical observations have emanated from systems across the Holarctic. Coincidental with decades of warming, and anomalies of high temperature and humidity in the sub-Arctic region of Fennoscandia, the mosquito-borne filarioid nematode Setaria tundra is now associated with emerging epidemic disease resulting in substantial morbidity and mortality for reindeer and moose. We describe a host-parasite system that involves reindeer, arthropods, and nematodes, which may contribute as a factor to ongoing declines documented for this ungulate species across northern ecosystems. We demonstrate that mean summer temperatures exceeding 14°C drive the emergence of disease due to S. tundra. An association between climate and emergence of filarioid parasites is a challenge to ecosystem services with direct effects on public health, sustainability of free-ranging and domestic ungulates, and ultimately food security for subsistence cultures at high latitudes

    Spatio-temporal divergence in the responses of Finland's boreal forests to climate variables

    Get PDF
    Spring greening in boreal forest ecosystems has been widely linked to increasing temperature, but few studies have attempted to unravel the relative effects of climate variables such as maximum temperature (TMX), minimum temperature (TMN), mean temperature (TMP), precipitation (PRE) and radiation (RAD) on vegetation growth at different stages of growing season. However, clarifying these effects is fundamental to better understand the relationship between vegetation and climate change. This study investigated spatio-temporal divergence in the responses of Finland's boreal forests to climate variables using the plant phenology index (PPI) calculated based on the latest Collection V006 MODIS BRDF-corrected surface reflectance products (MCD43C4) from 2002 to 2018, and identified the dominant climate variables controlling vegetation change during the growing season (May-September) on a monthly basis. Partial least squares (PLS) regression was used to quantify the response of PPI to climate variables and distinguish the separate impacts of different variables. The study results show the dominant effects of temperature on the PPI in May and June, with TMX, TMN and TMP being the most important explanatory variables for the variation of PPI depending on the location, respectively. Meanwhile, drought had an unexpectedly positive impact on vegetation in few areas. More than 50 % of the variation of PPI could be explained by climate variables for 68.5 % of the entire forest area in May and 87.7 % in June, respectively. During July to September, the PPI variance explained by climate and corresponding spatial extent rapidly decreased. Nevertheless, the RAD was found be the most important explanatory variable to July PPI in some areas. In contrast, the PPI in August and September was insensitive to climate in almost all of the regions studied. Our study gives useful insights on quantifying and identifying the relative importance of climate variables to boreal forest, which can be used to predict the possible response of forest under future warming.Peer reviewe

    Effects of water temperature on year-class strengths and growth patterns of pikeperch (Sander lucioperca (L.)) in the brackish Baltic Sea

    No full text
    Pikeperch (Sander lucioperca), the studied species, is the most important amongst freshwater fish species, commercially, in the brackish Baltic Sea. We studied the effects of water temperature on three aspects of pikeperch growth in Haminanlahti bay, Finland. First, annual length increments were related to age and temperature using a non-linear growth model. Since length increments were based on back-calculated lengths, i.e. repeated measurements, the first order autoregressive covariance structure was used. The model showed that when temperature increased annual length increments also increased, whereas increased age reduced annual length increments. In the modelling, the best fit was found with water degree-days over 10°C. Second, the onset of growth of pikeperch in spring had a positive relationship with water temperature and a negative one with the length of pikeperch. The latter finding suggests that smaller, non-mature pikeperch starts to grow earlier than larger, mature pikeperch. Third, the year-class strength was positively correlated with water degree-days, and the year-class strength negatively affected annual length increments. This indicates that within a strong year-class subsequent growth is reduced more that within a weak year-class, suggesting density-dependent growth
    corecore