29 research outputs found

    Mountains as barriers to gene flow in amphibians: Quantifying the differential effect of a major mountain ridge on the genetic structure of four sympatric species with different life history traits

    Get PDF
    AIM: To test the role of mountains as barriers to gene flow in co-distributed taxa with different life history traits. LOCATION: Sierra de Guadarrama, Central Spain. METHODS: We used larval genotypes of four amphibian species (Epidalea calamita, Hyla molleri, Pelophylax perezi and Pelobates cultripes) sampled on northern and southern slopes of Sierra de Guadarrama to describe genetic structure with FST, migration rates per generation, clustering algorithms and resistance by elevation surfaces. We also recorded individual displacement events as a proxy of dispersal potential during a seven-year monitoring project based on capture–mark–recapture (CMR). RESULTS: All species travelled longer cumulative distances than those reported in the study area for P. cultripes (0.71 km). Individuals of E. calamita travelled up to 3.55 km, followed by H. molleri (2.84 km) and P. perezi (1.51 km). Pairwise FST estimates showed lower overall connectivity in P. cultripes. Average migration rates per generation were low in all species, with exceptions in same-slope populations of H. molleri and P. cultripes. Clustering algorithms consistently recovered well-differentiated population groups of P. cultripes in northern versus southern slopes, but widely admixed areas were observed in the other species, especially near mountain passes. Resistance by elevation surfaces showed a strong barrier effect of Sierra de Guadarrama in P. cultripes and suggested a potential role of topography in the genetic structure of E. calamita and H. molleri. MAIN CONCLUSIONS: Sierra de Guadarrama currently acts as a strong barrier to gene flow for P. cultripes and, to a lesser extent, for E. calamita, H. molleri and P. perezi. This differential effect can be partly explained by differences in life history traits, including dispersal potential. Our findings support the general role of the Central System as a key feature shaping population connectivity and genetic variation in amphibian communities

    Inselect: Automating the Digitization of Natural History Collections

    Get PDF
    Copyright: © 2015 Hudson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article

    The data paper: a mechanism to incentivize data publishing in biodiversity science

    Get PDF
    <p/> <p>Background</p> <p>Free and open access to primary biodiversity data is essential for informed decision-making to achieve conservation of biodiversity and sustainable development. However, primary biodiversity data are neither easily accessible nor discoverable. Among several impediments, one is a lack of incentives to data publishers for publishing of their data resources. One such mechanism currently lacking is recognition through conventional scholarly publication of enriched metadata, which should ensure rapid discovery of 'fit-for-use' biodiversity data resources.</p> <p>Discussion</p> <p>We review the state of the art of data discovery options and the mechanisms in place for incentivizing data publishers efforts towards easy, efficient and enhanced publishing, dissemination, sharing and re-use of biodiversity data. We propose the establishment of the 'biodiversity data paper' as one possible mechanism to offer scholarly recognition for efforts and investment by data publishers in authoring rich metadata and publishing them as citable academic papers. While detailing the benefits to data publishers, we describe the objectives, work flow and outcomes of the pilot project commissioned by the Global Biodiversity Information Facility in collaboration with scholarly publishers and pioneered by Pensoft Publishers through its journals <it>Zookeys</it>, <it>PhytoKeys</it>, <it>MycoKeys</it>, <it>BioRisk</it>, <it>NeoBiota</it>, <it>Nature Conservation</it> and the forthcoming <it>Biodiversity Data Journal</it>. We then debate further enhancements of the data paper beyond the pilot project and attempt to forecast the future uptake of data papers as an incentivization mechanism by the stakeholder communities.</p> <p>Conclusions</p> <p>We believe that in addition to recognition for those involved in the data publishing enterprise, data papers will also expedite publishing of fit-for-use biodiversity data resources. However, uptake and establishment of the data paper as a potential mechanism of scholarly recognition requires a high degree of commitment and investment by the cross-sectional stakeholder communities.</p

    Genome-Wide Analysis of Factors Affecting Transcription Elongation and DNA Repair: A New Role for PAF and Ccr4-Not in Transcription-Coupled Repair

    Get PDF
    RNA polymerases frequently deal with a number of obstacles during transcription elongation that need to be removed for transcription resumption. One important type of hindrance consists of DNA lesions, which are removed by transcription-coupled repair (TC-NER), a specific sub-pathway of nucleotide excision repair. To improve our knowledge of transcription elongation and its coupling to TC-NER, we used the yeast library of non-essential knock-out mutations to screen for genes conferring resistance to the transcription-elongation inhibitor mycophenolic acid and the DNA-damaging agent 4-nitroquinoline-N-oxide. Our data provide evidence that subunits of the SAGA and Ccr4-Not complexes, Mediator, Bre1, Bur2, and Fun12 affect transcription elongation to different extents. Given the dependency of TC-NER on RNA Polymerase II transcription and the fact that the few proteins known to be involved in TC-NER are related to transcription, we performed an in-depth TC-NER analysis of a selection of mutants. We found that mutants of the PAF and Ccr4-Not complexes are impaired in TC-NER. This study provides evidence that PAF and Ccr4-Not are required for efficient TC-NER in yeast, unraveling a novel function for these transcription complexes and opening new perspectives for the understanding of TC-NER and its functional interconnection with transcription elongation

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac
    corecore