245 research outputs found

    Monitoring of the prompt radio emission from the unusual supernova 2004dj in NGC2403

    Full text link
    Supernova 2004dj in the nearby spiral galaxy NGC2403 was detected optically in July 2004. Peaking at a magnitude of 11.2, this is the brightest supernova detected for several years. Here we present Multi-Element Radio Linked Interferometer Network (MERLIN) observations of this source, made over a four month period, which give a position of R.A. = 07h37m17.044s, Dec =+65deg35'57.84" (J2000.0). We also present a well-sampled 5 GHz light curve covering the period from 5 August to 2 December 2004. With the exception of the unusual and very close SN 1987A, these observations represent the first detailed radio light curve for the prompt emission from a Type II-P supernova.Comment: (1) Jodrell Bank Observatory (2) University of Valencia (3) University of Sheffield 6 pages, 1 figure. To appear in ApJ letter

    The peculiar mass-loss history of SN 2014C as revealed through AMI radio observations

    Get PDF
    We present a radio light curve of supernova (SN) 2014C taken with the Arcminute Microkelvin Imager (AMI) Large Array at 15.7 GHz. Optical observations presented by Milisavljevic et al. demonstrated that SN 2014C metamorphosed from a stripped-envelope Type Ib SN into a strongly interacting Type IIn SN within 1 year. The AMI light curve clearly shows two distinct radio peaks, the second being a factor of 4 times more luminous than the first peak. This double bump morphology indicates two distinct phases of mass-loss from the progenitor star with the transition between density regimes occurring at 100-200 days. This reinforces the interpretation that SN 2014C exploded in a low density region before encountering a dense Hydrogen-rich shell of circumstellar material that was likely ejected by the progenitor prior to the explosion. The AMI flux measurements of the first light curve bump are the only reported observations taken within ∌ 50 to ∌ 125 days post-explosion, before the blast-wave encountered the Hydrogen shell. Simplistic synchrotron self-absorption (SSA) and free-free absorption (FFA) modelling suggest that some physical properties of SN 2014C are consistent with the properties of other Type Ibc and IIn SNe. However, our single frequency data does not allow us to distinguish between these two models, which implies they are likely too simplistic to describe the complex environment surrounding this event. Lastly, we present the precise radio location of SN 2014C obtained with eMERLIN, which will be useful for future VLBI observations of the SN

    Spreading and vertical structure of the Persian Gulf and Red Sea outflows in the Northwestern Indian Ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(4), (2021): e2019JC015983, https://doi.org/10.1029/2019JC015983.In the Indian Ocean, salty water masses from the Persian Gulf and Red Sea are important sources of salt, heat, and nutrients. Across the Arabian Sea, these outflows impact human and biological activities, their thermohaline characteristics and shapes exhibiting important spatial and seasonal variability. The knowledge of the water masses properties is important to validate realistic simulations of the Indian Ocean. A classical approach to study these water masses is to track them on specific isopycnal levels. Nevertheless, their peaking thermohaline characteristics are not always found at a specific density but rather spread over a range. Here, we develop a detection algorithm able to capture the full vertical structure of the outflows, that we applied to a data set of about 126,000 vertical profiles. We are thus able to quantify the changes in their thermohaline signatures and in their vertical structures, characterized here by the intensity of the salinity peaks of the water masses and lateral injection of fresh and salty waters, and describe their spatial variability. Across the northwestern Indian Ocean, the salty outflows undergo several changes, diminishing their thermohaline signatures and peaks and layering. In their early stages in the narrow Gulf of Oman and Aden, the outflows present configurations indicative of diapycnal mixing. In the same regions and along the western edge of the Arabian Sea, these water masses are subject to lateral mixing. All over the Arabian Sea, salt fingering conditions are met for lower layers of the outflows.The authors thank the World Ocean Database (WOD), a collection of scientifically quality-controlled ocean profile data, an NCEI product and an International Oceanographic Data and Information Exchange (IODE) project, funded in partnership with the NOAA OAR Ocean Observing and Monitoring Division

    e-MERLIN and VLBI observations of the luminous infrared galaxy IC883: a nuclear starburst and an AGN candidate revealed

    Full text link
    The high star formation rates of luminous infrared galaxies (LIRGs) make them ideal places for core-collapse supernova (CCSN) searches. At radio frequencies, free from dust extinction, it is possible to detect compact components within the innermost LIRG nuclear regions, such as SNe and SN remnants, as well as AGN buried deep in the LIRG nuclei. We studied the LIRG IC883 aiming at: (i) investigating its (circum-)nuclear regions using the e-EVN at 5GHz, and e-MERLIN at 6.9GHz, complemented by archival VLBI data; (ii) detecting at radio frequencies the two recently reported circumnuclear SNe 2010cu and 2011hi, which were discovered by near-IR (NIR) adaptive optics observations of IC883; and (iii) further investigating the nature of SN2011hi at NIR by means of observations with Gemini-North. The circumnuclear regions traced by e-MERLIN at 6.9GHz have an extension of ~1kpc, and show a striking double-sided structure, which very likely corresponds to a warped rotating ring, in agreement with previous studies. Our e-EVN observations at 5GHz and complementary archival VLBI data at 5GHz and 8.4GHz, reveal the presence of various milliarcsec compact components in the nucleus of IC883. A single compact source, an AGN candidate, dominates the emission at both nuclear and circumnuclear scales, as imaged with the e-EVN and e-MERLIN, respectively. The other milliarcsec components are very suggestive of ongoing nuclear CCSN activity. Our e-EVN observations also resulted in upper limits to the radio luminosity of the two SNe in IC883 recently discovered at NIR. We refine the classification of SN2011hi as a Type IIP SN according to our latest Gemini-North epoch from 2012, in agreement with a low-luminosity radio SN nature. We estimate a CCSN rate lower limit of 1.1_{-0.6}^{+1.3} yr^{-1} for the entire galaxy, based on three nuclear radio SNe and the circumnuclear SNe 2010cu and 2011hi. (abridged)Comment: 9 pages, 5 figures and 2 tables. Accepted for publication in A&

    Observation of TeV gamma-rays from the unidentified source HESS J1841-055 with the ARGO-YBJ experiment

    Get PDF
    We report the observation of a very high energy \gamma-ray source, whose position is coincident with HESS J1841-055. This source has been observed for 4.5 years by the ARGO-YBJ experiment from November 2007 to July 2012. Its emission is detected with a statistical significance of 5.3 standard deviations. Parameterizing the source shape with a two-dimensional Gaussian function we estimate an extension \sigma=(0.40(+0.32,-0.22}) degree, consistent with the HESS measurement. The observed energy spectrum is dN/dE =(9.0-+1.6) x 10^{-13}(E/5 TeV)^{-2.32-+0.23} photons cm^{-2} s^{-1} TeV^{-1}, in the energy range 0.9-50 TeV. The integral \gamma-ray flux above 1 TeV is 1.3-+0.4 Crab units, which is 3.2-+1.0 times the flux derived by HESS. The differences in the flux determination between HESS and ARGO-YBJ, and possible counterparts at other wavelengths are discussed.Comment: 17 pages, 4 figures, have been accepted for publication in Ap

    What is the progenitor of the Type Ia SN 2014J?

    Get PDF
    We report the deepest radio interferometric observations of the closest Type Ia supernova in decades, SN 2014J, which exploded in the nearby galaxy M 82. These observations represent, together with radio observations of SNe 2011fe, the most sensitive radio studies of a Type Ia SN ever. We constrain the mass-loss rate from the progenitor system of SN 2014J lower than 7.0 × 10^(−10) M yr^(−1) (for a wind speed of 100 km s^(−1) ). Our deep upper limits favor a double-degenerate scenario–involving two WD stars–for the progenitor system of SN 2014J, as such systems have less circumstellar gas than our upper limits. By contrast, most single-degenerate scenarios, i.e., the wide family of progenitor systems where a red giant, main-sequence, or sub-giant star donates mass to a exploding white dwarf, are ruled out by our observations. The evidence from SNe 2011fe and 2014J points in the direction of a double-degenerate scenario for both

    LeMMINGs. VI. Connecting nuclear activity to bulge properties of active and inactive galaxies: radio scaling relations and galaxy environment

    Full text link
    Multiwavelength studies indicate that nuclear activity and bulge properties are closely related, but the details remain unclear. To study this further, we combine Hubble Space TelescopeHubble~Space~Telescope bulge structural and photometric properties with 1.5 GHz, ee-MERLIN nuclear radio continuum data from the LeMMINGs survey for a large sample of 173 `active' galaxies (LINERs and Seyferts) and `inactive' galaxies (H IIs and absorption line galaxies, ALGs). Dividing our sample into active and inactive, they define distinct (radio core luminosity)−-(bulge mass), L_R,core-M_*,bulge, relations, with a mass turnover at M_*, bulge ~ 10^(9.8 +- 0.3) M_sun (supermassive black hole mass M_BH ~ 10^(6.8 +- 0.3) M_sun), which marks the transition from AGN-dominated nuclear radio emission in more massive bulges to that mainly driven by stellar processes in low-mass bulges. None of our 10/173 bulgeless galaxies host an AGN. The AGN fraction increases with increasing M_*, bulge such that f_optical_AGN ∝\propto M_*,bulge^(0.24 +- 0.06) and f_radio_AGN ∝\propto M_*,bulge^(0.24 +- 0.05). Between M_*,bulge ~ 10^8.5 and 10^11.3 M_sun, f_optical_AGN steadily rises from 15 +- 4 to 80 +- 5 per cent. We find that at fixed bulge mass, the radio loudness, nuclear radio activity and the (optical and radio) AGN fraction exhibit no dependence on environment. Radio-loud hosts preferentially possess an early-type morphology than radio-quiet hosts, the two types are however indistinguishable in terms of bulge S\'ersic index and ellipticity, while results on the bulge inner logarithmic profile slope are inconclusive. We finally discuss the importance of bulge mass in determining the AGN triggering processes, including potential implications for the nuclear radio emission in nearby galaxies.Comment: 27 pages, 15 figures, 4 tables, accepted for publication in MNRA

    High Altitude test of RPCs for the ARGO-YBJ experiment

    Get PDF
    A 50 m**2 RPC carpet was operated at the YangBaJing Cosmic Ray Laboratory (Tibet) located 4300 m a.s.l. The performance of RPCs in detecting Extensive Air Showers was studied. Efficiency and time resolution measurements at the pressure and temperature conditions typical of high mountain laboratories, are reported.Comment: 16 pages, 10 figures, submitted to Nucl. Instr. Met
    • 

    corecore