35 research outputs found

    Insights and Opportunities: Technologies, Policies, and Markets for Clean Energy Solutions

    Full text link
    A presentation highlighting how strategic energy analysis can affect technologies, policies, and markets for clean energy solutions. This includes an overview of some of NREL\u27s models and tools as well as results from laboratory analysis

    Mobilizing Public Markets to Finance Renewable Energy Projects: Insights from Expert Stakeholders

    Get PDF
    Financing renewable energy projects in the United States can be a complex, time consuming, and expensive process. Currently, most equity investment in new renewable power production facilities is supported by tax credits and accelerated depreciation benefits, and is constrained by the pool of potential investors that can fully use these tax benefits and are willing to engage in complex financial structures. For debt financing, non-government lending to renewables has largely been provided by foreign banks that may be under future lending constraints due to economic and regulatory conditions.To discuss these and other renewable energy financing challenges and to identify new sources of capital to the U.S. market, two roundtable discussions were held with renewable energy and financing experts in April 2012. This report summarizes the key messages of those discussions and is designed to provide insights to the U.S. market and inform the international conversation on renewable energy financing innovations

    International society of sports nutrition position stand: diets and body composition

    Full text link
    Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on a critical analysis of the literature regarding the effects of diet types (macronutrient composition; eating styles) and their influence on body composition. The ISSN has concluded the following. 1) There is a multitude of diet types and eating styles, whereby numerous subtypes fall under each major dietary archetype. 2) All body composition assessment methods have strengths and limitations. 3) Diets primarily focused on fat loss are driven by a sustained caloric deficit. The higher the baseline body fat level, the more aggressively the caloric deficit may be imposed. Slower rates of weight loss can better preserve lean mass (LM) in leaner subjects. 4) Diets focused primarily on accruing LM are driven by a sustained caloric surplus to facilitate anabolic processes and support increasing resistance-training demands. The composition and magnitude of the surplus, as well as training status of the subjects can influence the nature of the gains. 5) A wide range of dietary approaches (low-fat to low-carbohydrate/ketogenic, and all points between) can be similarly effective for improving body composition. 6) Increasing dietary protein to levels significantly beyond current recommendations for athletic populations may result in improved body composition. Higher protein intakes (2.3–3.1 g/ kg FFM) may be required to maximize muscle retention in lean, resistance-trained subjects under hypocaloric conditions. Emerging research on very high protein intakes (\u3e3 g/kg) has demonstrated that the known thermic, satiating, and LM-preserving effects of dietary protein might be amplified in resistance-training subjects. 7) The collective body of intermittent caloric restriction research demonstrates no significant advantage over daily caloric restriction for improving body composition. 8) The long-term success of a diet depends upon compliance and suppression or circumvention of mitigating factors such as adaptive thermogenesis. 9) There is a paucity of research on women and older populations, as well as a wide range of untapped permutations of feeding frequency and macronutrient distribution at various energetic balances combined with training. Behavioral and lifestyle modification strategies are still poorly researched areas of weight management

    International Society of Sports Nutrition Position Stand:Probiotics

    Get PDF
    Position statement: The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of probiotic supplementation to optimize the health, performance, and recovery of athletes. Based on the current available literature, the conclusions of the ISSN are as follows: Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host (FAO/WHO). Probiotic administration has been linked to a multitude of health benefits, with gut and immune health being the most researched applications. Despite the existence of shared, core mechanisms for probiotic function, health benefits of probiotics are strain- and dose-dependent. Athletes have varying gut microbiota compositions that appear to reflect the activity level of the host in comparison to sedentary people, with the differences linked primarily to the volume of exercise and amount of protein consumption. Whether differences in gut microbiota composition affect probiotic efficacy is unknown. The main function of the gut is to digest food and absorb nutrients. In athletic populations, certain probiotics strains can increase absorption of key nutrients such as amino acids from protein, and affect the pharmacology and physiological properties of multiple food components. Immune depression in athletes worsens with excessive training load, psychological stress, disturbed sleep, and environmental extremes, all of which can contribute to an increased risk of respiratory tract infections. In certain situations, including exposure to crowds, foreign travel and poor hygiene at home, and training or competition venues, athletes’ exposure to pathogens may be elevated leading to increased rates of infections. Approximately 70% of the immune system is located in the gut and probiotic supplementation has been shown to promote a healthy immune response. In an athletic population, specific probiotic strains can reduce the number of episodes, severity and duration of upper respiratory tract infections. Intense, prolonged exercise, especially in the heat, has been shown to increase gut permeability which potentially can result in systemic toxemia. Specific probiotic strains can improve the integrity of the gut-barrier function in athletes. Administration of selected anti-inflammatory probiotic strains have been linked to improved recovery from muscle-damaging exercise. The minimal effective dose and method of administration (potency per serving, single vs. split dose, delivery form) of a specific probiotic strain depends on validation studies for this particular strain. Products that contain probiotics must include the genus, species, and strain of each live microorganism on its label as well as the total estimated quantity of each probiotic strain at the end of the product’s shelf life, as measured by colony forming units (CFU) or live cells. Preclinical and early human research has shown potential probiotic benefits relevant to an athletic population that include improved body composition and lean body mass, normalizing age-related declines in testosterone levels, reductions in cortisol levels indicating improved responses to a physical or mental stressor, reduction of exercise-induced lactate, and increased neurotransmitter synthesis, cognition and mood. However, these potential benefits require validation in more rigorous human studies and in an athletic population

    International society of sports nutrition position stand: diets and body composition

    Get PDF
    Abstract Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on a critical analysis of the literature regarding the effects of diet types (macronutrient composition; eating styles) and their influence on body composition. The ISSN has concluded the following. 1) There is a multitude of diet types and eating styles, whereby numerous subtypes fall under each major dietary archetype. 2) All body composition assessment methods have strengths and limitations. 3) Diets primarily focused on fat loss are driven by a sustained caloric deficit. The higher the baseline body fat level, the more aggressively the caloric deficit may be imposed. Slower rates of weight loss can better preserve lean mass (LM) in leaner subjects. 4) Diets focused primarily on accruing LM are driven by a sustained caloric surplus to facilitate anabolic processes and support increasing resistance-training demands. The composition and magnitude of the surplus, as well as training status of the subjects can influence the nature of the gains. 5) A wide range of dietary approaches (low-fat to low-carbohydrate/ketogenic, and all points between) can be similarly effective for improving body composition. 6) Increasing dietary protein to levels significantly beyond current recommendations for athletic populations may result in improved body composition. Higher protein intakes (2.3–3.1 g/kg FFM) may be required to maximize muscle retention in lean, resistance-trained subjects under hypocaloric conditions. Emerging research on very high protein intakes (>3 g/kg) has demonstrated that the known thermic, satiating, and LM-preserving effects of dietary protein might be amplified in resistance-training subjects. 7) The collective body of intermittent caloric restriction research demonstrates no significant advantage over daily caloric restriction for improving body composition. 8) The long-term success of a diet depends upon compliance and suppression or circumvention of mitigating factors such as adaptive thermogenesis. 9) There is a paucity of research on women and older populations, as well as a wide range of untapped permutations of feeding frequency and macronutrient distribution at various energetic balances combined with training. Behavioral and lifestyle modification strategies are still poorly researched areas of weight management

    International Society of Sports Nutrition Position Stand: Diets and Body Composition

    Get PDF
    Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on a critical analysis of the literature regarding the effects of diet types (macronutrient composition; eating styles) and their influence on body composition. The ISSN has concluded the following. 1) There is a multitude of diet types and eating styles, whereby numerous subtypes fall under each major dietary archetype. 2) All body composition assessment methods have strengths and limitations. 3) Diets primarily focused on fat loss are driven by a sustained caloric deficit. The higher the baseline body fat level, the more aggressively the caloric deficit may be imposed. Slower rates of weight loss can better preserve lean mass (LM) in leaner subjects. 4) Diets focused primarily on accruing LM are driven by a sustained caloric surplus to facilitate anabolic processes and support increasing resistance-training demands. The composition and magnitude of the surplus, as well as training status of the subjects can influence the nature of the gains. 5) A wide range of dietary approaches (low-fat to low-carbohydrate/ketogenic, and all points between) can be similarly effective for improving body composition. 6) Increasing dietary protein to levels significantly beyond current recommendations for athletic populations may result in improved body composition. Higher protein intakes (2.3–3.1 g/kg FFM) may be required to maximize muscle retention in lean, resistance-trained subjects under hypocaloric conditions. Emerging research on very high protein intakes (\u3e3 g/kg) has demonstrated that the known thermic, satiating, and LM-preserving effects of dietary protein might be amplified in resistance-training subjects. 7) The collective body of intermittent caloric restriction research demonstrates no significant advantage over daily caloric restriction for improving body composition. 8) The long-term success of a diet depends upon compliance and suppression or circumvention of mitigating factors such as adaptive thermogenesis. 9) There is a paucity of research on women and older populations, as well as a wide range of untapped permutations of feeding frequency and macronutrient distribution at various energetic balances combined with training. Behavioral and lifestyle modification strategies are still poorly researched areas of weight management

    International society of sports nutrition position stand: caffeine and exercise performance

    Get PDF
    Following critical evaluation of the available literature to date, The International Society of Sports Nutrition (ISSN) position regarding caffeine intake is as follows: 1. Supplementation with caffeine has been shown to acutely enhance various aspects of exercise performance in many but not all studies. Small to moderate benefits of caffeine use include, but are not limited to: muscular endurance, movement velocity and muscular strength, sprinting, jumping, and throwing performance, as well as a wide range of aerobic and anaerobic sport-specific actions. 2. Aerobic endurance appears to be the form of exercise with the most consistent moderate-to-large benefits from caffeine use, although the magnitude of its effects differs between individuals. 3. Caffeine has consistently been shown to improve exercise performance when consumed in doses of 3–6 mg/ kg body mass. Minimal effective doses of caffeine currently remain unclear but they may be as low as 2 mg/kg body mass. Very high doses of caffeine (e.g. 9 mg/kg) are associated with a high incidence of side-effects and do not seem to be required to elicit an ergogenic effect. 4. The most commonly used timing of caffeine supplementation is 60 min pre-exercise. Optimal timing of caffeine ingestion likely depends on the source of caffeine. For example, as compared to caffeine capsules, caffeine chewing gums may require a shorter waiting time from consumption to the start of the exercise session. 5. Caffeine appears to improve physical performance in both trained and untrained individuals. 6. Inter-individual differences in sport and exercise performance as well as adverse effects on sleep or feelings of anxiety following caffeine ingestion may be attributed to genetic variation associated with caffeine metabolism, and physical and psychological response. Other factors such as habitual caffeine intake also may play a role in between-individual response variation. 7. Caffeine has been shown to be ergogenic for cognitive function, including attention and vigilance, in most individuals. 8. Caffeine may improve cognitive and physical performance in some individuals under conditions of sleep deprivation. 9. The use of caffeine in conjunction with endurance exercise in the heat and at altitude is well supported when dosages range from 3 to 6 mg/kg and 4–6 mg/kg, respectively. 10. Alternative sources of caffeine such as caffeinated chewing gum, mouth rinses, energy gels and chews have been shown to improve performance, primarily in aerobic exercise. 11. Energy drinks and pre-workout supplements containing caffeine have been demonstrated to enhance both anaerobic and aerobic performance

    A Selective HDAC 1/2 Inhibitor Modulates Chromatin and Gene Expression in Brain and Alters Mouse Behavior in Two Mood-Related Tests

    Get PDF
    Psychiatric diseases, including schizophrenia, bipolar disorder and major depression, are projected to lead global disease burden within the next decade. Pharmacotherapy, the primary – albeit often ineffective – treatment method, has remained largely unchanged over the past 50 years, highlighting the need for novel target discovery and improved mechanism-based treatments. Here, we examined in wild type mice the impact of chronic, systemic treatment with Compound 60 (Cpd-60), a slow-binding, benzamide-based inhibitor of the class I histone deacetylase (HDAC) family members, HDAC1 and HDAC2, in mood-related behavioral assays responsive to clinically effective drugs. Cpd-60 treatment for one week was associated with attenuated locomotor activity following acute amphetamine challenge. Further, treated mice demonstrated decreased immobility in the forced swim test. These changes are consistent with established effects of clinical mood stabilizers and antidepressants, respectively. Whole-genome expression profiling of specific brain regions (prefrontal cortex, nucleus accumbens, hippocampus) from mice treated with Cpd-60 identified gene expression changes, including a small subset of transcripts that significantly overlapped those previously reported in lithium-treated mice. HDAC inhibition in brain was confirmed by increased histone acetylation both globally and, using chromatin immunoprecipitation, at the promoter regions of upregulated transcripts, a finding consistent with in vivo engagement of HDAC targets. In contrast, treatment with suberoylanilide hydroxamic acid (SAHA), a non-selective fast-binding, hydroxamic acid HDAC 1/2/3/6 inhibitor, was sufficient to increase histone acetylation in brain, but did not alter mood-related behaviors and had dissimilar transcriptional regulatory effects compared to Cpd-60. These results provide evidence that selective inhibition of HDAC1 and HDAC2 in brain may provide an epigenetic-based target for developing improved treatments for mood disorders and other brain disorders with altered chromatin-mediated neuroplasticity.Stanley Medical Research InstituteNational Institutes of Health (U.S.) (R01DA028301)National Institutes of Health (U.S.) (R01DA030321

    International Society of Sports Nutrition Position Stand: Probiotics.

    Get PDF
    Position statement: The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of probiotic supplementation to optimize the health, performance, and recovery of athletes. Based on the current available literature, the conclusions of the ISSN are as follows: 1)Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host (FAO/WHO).2)Probiotic administration has been linked to a multitude of health benefits, with gut and immune health being the most researched applications.3)Despite the existence of shared, core mechanisms for probiotic function, health benefits of probiotics are strain- and dose-dependent.4)Athletes have varying gut microbiota compositions that appear to reflect the activity level of the host in comparison to sedentary people, with the differences linked primarily to the volume of exercise and amount of protein consumption. Whether differences in gut microbiota composition affect probiotic efficacy is unknown.5)The main function of the gut is to digest food and absorb nutrients. In athletic populations, certain probiotics strains can increase absorption of key nutrients such as amino acids from protein, and affect the pharmacology and physiological properties of multiple food components.6)Immune depression in athletes worsens with excessive training load, psychological stress, disturbed sleep, and environmental extremes, all of which can contribute to an increased risk of respiratory tract infections. In certain situations, including exposure to crowds, foreign travel and poor hygiene at home, and training or competition venues, athletes' exposure to pathogens may be elevated leading to increased rates of infections. Approximately 70% of the immune system is located in the gut and probiotic supplementation has been shown to promote a healthy immune response. In an athletic population, specific probiotic strains can reduce the number of episodes, severity and duration of upper respiratory tract infections.7)Intense, prolonged exercise, especially in the heat, has been shown to increase gut permeability which potentially can result in systemic toxemia. Specific probiotic strains can improve the integrity of the gut-barrier function in athletes.8)Administration of selected anti-inflammatory probiotic strains have been linked to improved recovery from muscle-damaging exercise.9)The minimal effective dose and method of administration (potency per serving, single vs. split dose, delivery form) of a specific probiotic strain depends on validation studies for this particular strain. Products that contain probiotics must include the genus, species, and strain of each live microorganism on its label as well as the total estimated quantity of each probiotic strain at the end of the product's shelf life, as measured by colony forming units (CFU) or live cells.10)Preclinical and early human research has shown potential probiotic benefits relevant to an athletic population that include improved body composition and lean body mass, normalizing age-related declines in testosterone levels, reductions in cortisol levels indicating improved responses to a physical or mental stressor, reduction of exercise-induced lactate, and increased neurotransmitter synthesis, cognition and mood. However, these potential benefits require validation in more rigorous human studies and in an athletic population

    Integration of energy systems.

    No full text
    corecore