294 research outputs found

    WUVS Simulator: Detectability of spectral lines with the WSO-UV spectrographs

    Get PDF
    The World Space Observatory - Ultraviolet (WSO-UV) space telescope is equipped with high dispersion (55,000) spectrographs working in the 1150-3100 {\AA} spectral range. To evaluate the impact of the design on the scientific objectives of the mission, a simulation software tool has been developed. This simulator builds on the development made for the PLATO space mission, and it is designed to generate synthetic time-series of images by including models of all important noise sources. In this article, we describe its design and performance. Moreover, its application to the detectability of important spectral features for star formation and exoplanetary research is addressed.Comment: 8 pages, 5 figure

    Ruddlesden–Popper hybrid lead bromide perovskite nanosheets of phase pure n=2: Stabilized colloids stored in the solid state

    Get PDF
    Ruddlesden-Popper lead halide perovskite (RP-LHP) nano-nanostructures can be regarded as self-assembled quantum wells or superlattices of 3D perovskites with an intrinsic quantum well thickness of a single or a few (n=2-4) lead halide layers; the quantum wells are separated by organic layers. They can be scaled down to a single quantum well dimension. Here, the preparation of highly (photo)chemical and colloidal stable hybrid LHP nanosheets (NSs) of ca. 7.4 µm lateral size and 2.5 nm quantum well height (thereby presenting a deep blue emission at ca. 440 nm), is reported for the first time. The NSs are close-lying and they even interconnect when deposited on a substrate. Their synthesis is based on the use of the p-toluenesulfonic acid/dodecylamine (pTS/DDA) ligand pair and their (photo)chemical stability and photoluminescence is enhanced by adding EuBr2 nanodots (EuNDs). Strikingly, they can be preserved as a solid and stored for at least one year. The blue emissive colloid can be recovered from the solid as needed by simply dispersing the powder in toluene and then using it to prepare solid films, making them very promising candidates for manufacturing devices. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

    Accurate determination of the chiral indices of individual carbon nanotubes by combining electron diffraction and Resonant Raman spectroscopy

    Get PDF
    The experimental approach combining high resolution transmission electron microscopy (HRTEM), electron diffraction (ED) and resonant Raman spectroscopy (RRS) on the same free-standing individual carbon nanotubes (CNT) is the most efficient method to determine unambiguously the intrinsic features of the Raman-active phonons. In this paper, we review the main results obtained by the approach regarding the intrinsic features of the phonons of single-walled (SWNT) and double-walled carbon nanotubes (DWNT). First, we detail the different methods to identify the structure of SWNTs and DWNTs from the analysis of their electron diffraction patterns (EDP). In the following, we remind the principal features of the Raman response of SWNTs, unambiguously index-identified by ED. A special attention is devoted to the effect of the inter-layer interaction on the frequencies of the Raman-active phonons in index-identified DWNTs. The information obtained on index-identified SWNT and DWNT allows us to propose Raman criteria, which help identifying CNT when the ED fails to propose a single assignment. The efficiency of the Raman criteria as the complement to the ED information for the index-assignment of a few SWNTs and DWNTs is shown. The same approach to index-assign a triple-walled carbon nanotube (TWNT), by combining ED and RRS information, is reported

    Pumping Metallic Nanoparticles with Spatial Precision within Magnetic Mesoporous Platforms: 3D Characterization and Catalytic Application

    Get PDF
    The present work shows an efficient strategy to assemble two types of functional nanoparticles onto mesoporous MCM-41 silica nanospheres with a high degree of spatial precision. In a first stage, magnetite nanoparticles are synthesized with a size larger than the support pores and grafted covalently through a peptide-like bonding onto their external surface. This endowed the silica nanoparticles with a strong superparamagnetic response, while preserving the highly ordered interior space for the encapsulation of other functional guest species. Second, we report the finely controlled pumping of preformed Pt nanoparticles (1.5 nm) within the channels of the magnetic MCM-41 nanospheres to confer an additional catalytic functionality to the multiassembled nanoplatform. The penetration depth of the metallic nanoparticles can be explained as a result of the interplay between the particle-wall electrostatic attraction and the repulsive forces between neighboring Pt nanoparticles. A detailed transmission electron microscopy and a 3D high-resolution high-angle annular dark-field detector electron tomography study were carried out to characterize the material and to explain the assembly mechanism. Finally, the performance of these multifunctional nanohybrids as magnetically recoverable catalysts has been evaluated in the selective hydrogenation of p-nitrophenol, a well-known pollutant and intermediate in multiple industrial processes

    A 3D insight on the catalytic nanostructuration of few-layer graphene

    Get PDF
    The catalytic cutting of few-layer graphene is nowadays a hot topic in materials research due to its potential applications in the catalysis field and the graphene nanoribbons fabrication. We show here a 3D analysis of the nanostructuration of few-layer graphene by iron-based nanoparticles under hydrogen flow. The nanoparticles located at the edges or attached to the steps on the FLG sheets create trenches and tunnels with orientations, lengths and morphologies defined by the crystallography and the topography of the carbon substrate. The cross-sectional analysis of the 3D volumes highlights the role of the active nanoparticle identity on the trench size and shape, with emphasis on the topographical stability of the basal planes within the resulting trenches and channels, no matter the obstacle encountered. The actual study gives a deep insight on the impact of nanoparticles morphology and support topography on the 3D character of nanostructures built up by catalytic cutting

    YS-TaS2and YxLa1- xS-TaS2(0 ≤ x ≤ 1) Nanotubes: A Family of Misfit Layered Compounds

    Full text link
    We present the analysis of a family of nanotubes (NTs) based on the quaternary misfit layered compound (MLC) YxLa1-xS-TaS2. The NTs were successfully synthesized within the whole range of possible compositions via the chemical vapor transport technique. In-depth analysis of the NTs using electron microscopy and spectroscopy proves the in-phase (partial) substitution of La by Y in the (La,Y)S subsystem and reveals structural changes compared to the previously reported LaS-TaS2 MLC-NTs. The observed structure can be linked to the slightly different lattice parameters of LaS and YS. Raman spectroscopy and infrared transmission measurements reveal the tunability of the plasmonic and vibrational properties. Density-functional theory calculations showed that the YxLa1-xS-TaS2 MLCs are stable in all compositions. Moreover, the calculations indicated that substitution of La by Sc atoms is electronically not favorable, which explains our failed attempt to synthesize these MLC and NTs thereof. © 2020 American Chemical Society.Israel Science Foundation, ISF: 7130970101Center for Nanoscale Science and Technology, CNST: 43535000350000823717Deutsche Forschungsgemeinschaft, DFG: HE 7675/1-1University of the East, UEMinisterio de Economía y Competitividad, MINECO: MAT2016-79776-PA.E. acknowledges the support by Act 211 Government of the Russian Federation, Contract No. 02.A03.21.0006. The support of the Israel Science Foundation (Grant No. 7130970101), Irving and Cherna Moskowitz Center for Nano and Bio-Nano Imaging, and the Perlman Family Foundation and the Kimmel Center for Nanoscale Science (Grant No. 43535000350000) is greatly acknowledged. The HRSTEM and EELS studies as well as some of the ED and TEM investigations were conducted at the Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragon, Universidad de Zaragoza, Spain. We thank G. Antorrena and L. Casado (LMA-INA) for their help with the XRD acquisition and the electrical measurements, respectively. R.A. gratefully acknowledges the support from the Spanish Ministry of Economy and Competitiveness (MINECO) through Project Grant MAT2016-79776-P (AEI/FEDER, UE) and from the European Union H2020 program “ESTEEM3” (823717). S.H. acknowledges funding by the German Research Foundation (HE 7675/1-1). I.P. is the incumbent of the Sharon Zuckerman Research Fellow Chair

    Novel characterization techniques for cultural heritage using a TEM orientation imaging in combination with 3D precession diffraction tomography: a case study of green and white ancient Roman glass tesserae

    Get PDF
    We present new transmission electron microscopy (TEM) based electron diffraction characterization techniques (orientation imaging combined with 3D precession electron diffraction tomography-ADT) applied on cultural heritage materials. We have determined precisely unit cell parameters, crystal symmetry, atomic structure, and orientation/phase mapping of various pigment/opacifier crystallites at nm scale which are present in green and white Roman glass tesserae. Such TEM techniques can be an alternative to Synchrotron based techniques, and allow to distinguish accurately at nm scale between different crystal structures even in cases of same/very close chemical composition, where is also possible to visualize between different crystal orientations and amorphous/crystalline phases. This study additionally demonstrates that although opacifiers in green and white tesserae are found to have average Pb2Sb2O7 cubic and CaSb2O6 trigonal structures, their pyrochlore related framework can host many other elements like Cu, Ca, Fe through ionic exchanges at high firing temperatures which in turn may also contribute to the tesserae colour appearance

    EEL spectroscopic tomography: Towards a new dimension in nanomaterials analysis

    Full text link
    Electron tomography is a widely spread technique for recovering the three dimensional (3D) shape of nanostructured materials. Using a spectroscopic signal to achieve a reconstruction adds a fourth chemical dimension to the 3D structure. Up to date, energy filtering of the images in the transmission electron microscope (EFTEM) is the usual spectroscopic method even if most of the information in the spectrum is lost. Unlike EFTEM tomography, the use of electron energy-loss spectroscopy (EELS) spectrum images (SI) for tomographic reconstruction retains all chemical information, and the possibilities of this new approach still remain to be fully exploited. In this article we prove the feasibility of EEL spectroscopic tomography at low voltages (80kV) and short acquisition times from data acquired using an aberration corrected instrument and data treatment by Multivariate Analysis (MVA), applied to FexCo(3-x)O4@Co3O4 mesoporous materials. This approach provides a new scope into materials; the recovery of full EELS signal in 3D

    Electron energy-loss spectroscopic tomography of FexCo(3-x)O4 impregnated Co3O4 mesoporous particles: unraveling the chemical information in three dimensions

    Get PDF
    Electron energy-loss spectroscopy-spectrum image (EELS-SI) tomography is a powerful tool to investigate the three dimensional chemical configuration in nanostructures. Here, we demonstrate, for the first time, the possibility to characterize the spatial distribution of Fe and Co cations in a complex FexCo(3-x)O4/Co3O4 ordered mesoporous system. This hybrid material is relevant because of the ferrimagnetic/antiferromagnetic coupling and high surface area. We unambiguously prove that the EELS-SI tomography shows a sufficiently high resolution to simultaneously unravel the pore structure and the chemical signal

    Interlayer Dependence of G-Modes in Semiconducting Double-Walled Carbon Nanotubes

    Get PDF
    A double-walled carbon nanotube (DWNT), a coaxial composite of two single walled carbon nanotubes (SWNT), provides a unique model to study interactions between thetwo constituent SWNTs. Combining high resolution transmission electron microscopy (HRTEM), electron diffraction (ED), and resonant Raman scattering (RRS) experiments on the same individual suspended DWNT is the ultimate way to relate unambiguously its atomicstructure, defined by the chiral indices of the coaxial outer/inner SWNTs, and its Raman-active vibration modes. This approach is used to investigate the intertube distance dependence of theG-modes of individual index-identified DWNTs composed of two semiconducting SWNTs.We state the main features of the dependence of the G-mode frequencies on the distance between the inner and outer layers: (i) When the interlayer distance is larger than the nominal van der Waals distance (close to 0.34 nm), a downshift of the inner-layer G-modes with respectto the G-modes in the equivalent SWNTs is measured. (ii) The amplitude of the downshiftdepends on the interlayer distance, or in other words, on the negative pressure felt by the innerlayer in DWNT. (iii) No shift is observed for an intertube distance close to 0.34 nm
    corecore