38 research outputs found
RINT1 deficiency disrupts lipid metabolism and underlies a complex hereditary spastic paraplegia
The Rad50 interacting protein 1 (Rint1) is a key player in vesicular trafficking between the ER and Golgi apparatus. Biallelic variants in RINT1 cause infantile-onset episodic acute liver failure (ALF). Here, we describe 3 individuals from 2 unrelated families with novel biallelic RINT1loss-of-function variants who presented with early onset spastic paraplegia, ataxia, optic nerve hypoplasia, and dysmorphic features, broadening the previously described phenotype. Our functional and lipidomic analyses provided evidence that pathogenic RINT1 variants induce defective lipid-droplet biogenesis and profound lipid abnormalities in fibroblasts and plasma that impact both neutral lipid and phospholipid metabolism, including decreased triglycerides and diglycerides, phosphatidylcholine/phosphatidylserine ratios, and inhibited Lands cycle. Further, RINT1 mutations induced intracellular ROS production and reduced ATP synthesis, affecting mitochondria with membrane depolarization, aberrant cristae ultrastructure, and increased fission. Altogether, our results highlighted the pivotal role of RINT1 in lipid metabolism and mitochondria function, with a profound effect in central nervous system development
Increased localization of APP-C99 in mitochondria-associated ER membranes causes mitochondrial dysfunction in Alzheimer disease
In the amyloidogenic pathway associated with Alzheimer disease (AD), the
amyloid precursor protein (APP) is cleaved by beta-secretase to generate
a 99-aa C-terminal fragment (C99) that is then cleaved by c-secretase to
generate the beta-amyloid (Ab) found in senile plaques. In previous
reports, we and others have shown that c-secretase activity is enriched
in mitochondria-associated endoplasmic reticulum (ER) membranes (MAM)
and that ER-mitochondrial connectivity and MAM function are upregulated
in AD. We now show that C99, in addition to its localization in
endosomes, can also be found in MAM, where it is normally processed
rapidly by c-secretase. In cell models of AD, however, the concentration
of unprocessed C99 increases in MAM regions, resulting in elevated
sphingolipid turnover and an altered lipid composition of both MAM and
mitochondrial membranes. In turn, this change in mitochondrial membrane
composition interferes with the proper assembly and activity of
mitochondrial respiratory supercomplexes, thereby likely contributing to
the bioenergetic defects characteristic of AD.We thank Drs. Orian Shirihai and Marc Liesa (UCLA) for assistance with
the Seahorse measurements, Dr. Huaxi Xu (Sanford Burnham Institute) for
the APP-DKO MEFs and Dr. Mark Mattson (NIH) for the PS1 knock-in mice,
Drs. Arancio and Teich for the APP-KO mice tissues used in these
studies, Dr. Hua Yang (Columbia University) for mouse husbandry, and
Drs. Marc Tambini, Ira Tabas, and Serge Przedborski for helpful
comments. This work was supported by the Fundacion Alfonso Martin
Escudero (to M.P.); the Alzheimer's Drug Discovery Foundation, the
Ellison Medical Foundation, the Muscular Dystrophy Association, the U.S.
Department of Defense W911NF-12-1-9159 and W911F-15-1-0169), and the J.
Willard and Alice S. Marriott Foundation (to E.A.S.); the U.S. National
Institutes of Health (P01-HD080642 and P01-HD032062 to E.A.S.; NS071571
and HD071593 to M.F.M.; R01-NS056049 and P50-AG008702 to G.D.P.;
1S10OD016214-01A1 to G.S.P. and F.P.M, and K01-AG045335 to E.A.-G.), the
Lucien Cote Early Investigator Award in Clinical Genetics from the
Parkinson's Disease Foundation (PDF-CEI-1364 and PDF-CEI-1240) to
C.G.-L., and National Defense Science and Engineering Graduate
Fellowship (FA9550-11-C-0028) to R.R.A.S
Recommended from our members
Alzheimer’s-associated upregulation of mitochondria-associated ER membranes after traumatic brain injury
23 p.-5 fig.-3 tab.-1 graph. abst.Traumatic brain injury (TBI) can lead to neurodegenerative diseases such as Alzheimer’s disease (AD) through mechanisms that remain incompletely characterized. Similar to AD, TBI models present with cellular metabolic alterations and modulated cleavage of amyloid precursor protein (APP). Specifically, AD and TBI tissues display increases in amyloid-β as well as its precursor, the APP C-terminal fragment of 99 a.a. (C99). Our recent data in cell models of AD indicate that C99, due to its affinity for cholesterol, induces the formation of transient lipid raft domains in the ER known as mitochondria-associated endoplasmic reticulum (ER) membranes (“MAM” domains). The formation of these domains recruits and activates specific lipid metabolic enzymes that regulate cellular cholesterol trafficking and sphingolipid turnover. Increased C99 levels in AD cell models promote MAM formation and significantly modulate cellular lipid homeostasis. Here, these phenotypes were recapitulated in the controlled cortical impact (CCI) model of TBI in adult mice. Specifically, the injured cortex and hippocampus displayed significant increases in C99 and MAM activity, as measured by phospholipid synthesis, sphingomyelinase activity and cholesterol turnover. In addition, our cell type-specific lipidomics analyses revealed significant changes in microglial lipid composition that are consistent with the observed alterations in MAM-resident enzymes. Altogether, we propose that alterations in the regulation of MAM and relevant lipid metabolic pathways could contribute to the epidemiological connection between TBI and AD.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work was supported by the U.S. National Institutes of Health (T32-DK007647 to RRA; R21NS125395 to LS; S10-OD016214 and P30-CA013330 to FPM; R01-EB029523 to WM; R01-NS095803 to SGK; R01-NS088197 to RJD; R01-AG056387 to EA-G) and the U.S. Department of Defense (National Defense Science and Engineering Graduate Fellowship, FA9550-11-C-0028, to RRA).Peer reviewe
MFN2 mutations in Charcot-Marie-Tooth disease alter mitochondria-associated ER membrane function but do not impair bioenergetics.
Charcot-Marie-Tooth disease (CMT) type 2A is a form of peripheral neuropathy, due almost exclusively to dominant mutations in the nuclear gene encoding the mitochondrial protein mitofusin-2 (MFN2). However, there is no understanding of the relationship of clinical phenotype to genotype. MFN2 has two functions: it promotes inter-mitochondrial fusion and mediates endoplasmic reticulum (ER)-mitochondrial tethering at mitochondria-associated ER membranes (MAM). MAM regulates a number of key cellular functions, including lipid and calcium homeostasis, and mitochondrial behavior. To date, no studies have been performed to address whether mutations in MFN2 in CMT2A patient cells affect MAM function, which might provide insight into pathogenesis. Using fibroblasts from three CMT2AMFN2 patients with different mutations in MFN2, we found that some, but not all, examined aspects of ER-mitochondrial connectivity and of MAM function were indeed altered, and correlated with disease severity. Notably, however, respiratory chain function in those cells was unimpaired. Our results suggest that CMT2AMFN2 is a MAM-related disorder but is not a respiratory chain-deficiency disease. The alterations in MAM function described here could also provide insight into the pathogenesis of other forms of CMT
Alveolar type II epithelial cell FASN maintains lipid homeostasis in experimental COPD
20 p.-7 fig.Alveolar epithelial type II (AEC2) cells strictly regulate lipid metabolism to maintain surfactant synthesis. Loss of AEC2 cell function and surfactant production are implicated in the pathogenesis of the smoking-related lung disease chronic obstructive pulmonary disease (COPD). Whether smoking alters lipid synthesis in AEC2 cells and whether altering lipid metabolism in AEC2 cells contributes to COPD development are unclear. In this study, high-throughput lipidomic analysis revealed increased lipid biosynthesis in AEC2 cells isolated from mice chronically exposed to cigarette smoke (CS). Mice with a targeted deletion of the de novo lipogenesis enzyme, fatty acid synthase (FASN), in AEC2 cells (FasniΔAEC2) exposed to CS exhibited higher bronchoalveolar lavage fluid (BALF) neutrophils, higher BALF protein, and more severe airspace enlargement. FasniΔAEC2 mice exposed to CS had lower levels of key surfactant phospholipids but higher levels of BALF ether phospholipids, sphingomyelins, and polyunsaturated fatty acid–containing phospholipids, as well as increased BALF surface tension. FasniΔAEC2 mice exposed to CS also had higher levels of protective ferroptosis markers in the lung. These data suggest that AEC2 cell FASN modulates the response of the lung to smoke by regulating the composition of the surfactant phospholipidome.This work was supported by the National Natural Science Foundation of China (81925001 to JFX and 81800063 to LCF) and by the NIH grant P01 HL114501 (AMKC). SMC is supported by Science Foundation Ireland (Future Research Leaders Grant FRL4862). MP is supported by NIH grant K08 HL157728.Peer reviewe
Recommended from our members
Ribosome-associated vesicles: A dynamic subcompartment of the endoplasmic reticulum in secretory cells
The endoplasmic reticulum (ER) is a highly dynamic network of membranes. Here, we combine live-cell microscopy with in situ cryo–electron tomography to directly visualize ER dynamics in several secretory cell types including pancreatic β-cells and neurons under near-native conditions. Using these imaging approaches, we identify a novel, mobile form of ER, ribosome-associated vesicles (RAVs), found primarily in the cell periphery, which is conserved across different cell types and species. We show that RAVs exist as distinct, highly dynamic structures separate from the intact ER reticular architecture that interact with mitochondria via direct intermembrane contacts. These findings describe a new ER subcompartment within cells
Towards a unitary hypothesis of Alzheimer’s disease pathogenesis
33 p.-6 fig.-1 tab.The “amyloid cascade” hypothesis of Alzheimer’s disease (AD) pathogenesis invokes the accumulation in the brain of plaques (containing the amyloid- protein precursor [A PP] cleavage product amyloid- [A ]) and tangles (containing hyperphosphorylated tau) as drivers of pathogenesis. However, the poor track record of clinical trials based on this hypothesis suggests that the accumulation of these peptides is not the only cause of AD. Here, an alternative hypothesis is proposed in which the A PP cleavage product C99, not A , is the main culprit, via its role as a regulator of cholesterol metabolism. C99,which is a cholesterol sensor, promotes the formation of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM), a cholesterol-rich lipid raft-like subdomain of the ER that communicates, both physically and biochemically, with mitochondria. We propose that in early-onset AD (EOAD), MAM-localized C99 is elevated above normal levels, resulting in
increased transport of cholesterol from the plasma membrane to membranes of intracellular organelles, such as ER/endosomes,thereby upregulating MAM function and driving pathology. By the same token, late-onset AD (LOAD) is triggered by any genetic variant that increases the accumulation of intracellular cholesterol that, in turn, boosts the levels of C99 and again upregulates MAM function. Thus, the functional cause of AD is upregulated MAM function that, in turn, causes the hallmark disease phenotypes, including the plaques and tangles. Accordingly, the MAM hypothesis invokes two key interrelated elements, C99 and cholesterol, that converge at the MAM to drive AD pathogenesis. From this perspective, AD is, at bottom,a lipid disorder.This work was supported by grants from the U.S. National Institutes of Health (to EAG [1R01AG056387] and EAS [1R01NS117538]) and the J. Willard and Alice S. Marriott Foundation (to EAS).Peer reviewe