
Carter et al., Sci. Adv. 2020; 6 : eaay9572     1 April 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

1 of 17

C E L L  B I O L O G Y
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The endoplasmic reticulum (ER) is a highly dynamic network of membranes. Here, we combine live-cell microscopy 
with in situ cryo–electron tomography to directly visualize ER dynamics in several secretory cell types including 
pancreatic -cells and neurons under near-native conditions. Using these imaging approaches, we identify a novel, 
mobile form of ER, ribosome-associated vesicles (RAVs), found primarily in the cell periphery, which is conserved 
across different cell types and species. We show that RAVs exist as distinct, highly dynamic structures separate 
from the intact ER reticular architecture that interact with mitochondria via direct intermembrane contacts. These 
findings describe a new ER subcompartment within cells.

INTRODUCTION
The endoplasmic reticulum (ER) constitutes an extensive network 
of continuous subcompartments distributed throughout the cell (1–3), 
comprising the nuclear envelope and includes ribosome-associated rough 
ER (RER) and ribosome-free smooth ER (4–6). The advent of higher-
resolution imaging modalities has provided new insights into ER or-
ganization. Indeed, recent work using super-resolution imaging revealed 
that ER elements in the cell periphery previously defined as sheets were, 
in fact, dense tubular structures arranged as ER matrices (7, 8).

Here, we use live-cell super-resolution stimulated emission depletion 
(STED) microscopy together with highly inclined thin illumination 

(HiLo) and high-speed three-dimensional (3D) wide-field imaging to 
visualize ER network dynamics in real time. We have integrated these 
live-cell imaging approaches with in situ cryo–electron tomography 
(cryo-ET) and cryo–correlative light and electron microscopy 
(cryo-CLEM) to visualize the ER and its relationships with other 
intracellular organelles in near-native states. Notably, the com-
bination of these highly complementary methods has revealed a 
novel ER-derived compartment that is mobile, vesicular, and associ-
ated with mammalian 80S cytoplasmic ribosomes. Moreover, with 
cryo–focused ion beam (cryo-FIB) milling and cryo-ET, we show 
that these vesicles exist as discrete structures separate from the 
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intact reticular ER architecture. We call these organelles ribosome-
associated vesicles (RAVs). Detailed characterization of the RAVs 
revealed that these structures are conserved across multiple cell 
types and species using both conventional transmission electron 
microscopy (TEM) and cryo–electron microscopy (cryo-EM). We 
also show that RAVs interact with mitochondria via direct mem-
brane contacts, shedding light on the means by which ER and its 
derivatives communicate with other organelles. Overall, our 
analyses expand the number of recognized ER subcompartments 
within cells.

RESULTS
Live-cell imaging of dynamic punctate ER
We visualized the organization of the ER by super-resolution live-cell 
STED imaging of insulin-secreting pancreatic -cell–derived INS-1E 
cells expressing ER marker mNeon-KDEL. Consistent with the ER 
being an intact network of dynamic membranes, we observed an 
extensive reticular ER organization throughout the cell (Fig. 1A). 
Unexpectedly, we also observed apparently punctate mNeon-KDEL–
labeled structures predominantly in the cell periphery (Fig. 1A and 
movie S1). Imaging of multiple optical planes in sequence above and 
below these structures suggested that the puncta are discrete, isolated 
structures interspersed with the reticulum (movie S1).

To further characterize the mNeon-KDEL–labeled punctate 
structures, we applied HiLo microscopy. HiLo microscopy uses a 
laser directed at a highly inclined angle through the sample, with 
acquired images numerically processed to reject out-of-focus back-
ground signal. This provides high-resolution, diffraction-limited 
images with a superior signal-to-noise ratio approaching total in-
ternal reflection fluorescence (TIRF) imaging, but at greater depths 
of view (9–11). These advantages permitted us to visualize punctate 
structures without being potentially obscured by background fluores-
cence, particularly when the extensive ER network is densely packed as 
in the INS-1E cells. Coupled with rapid image acquisition, continuous 
time-lapse HiLo imaging again revealed a few highly dynamic 
mNeon-KDEL–labeled putative puncta in the small volume at or near 
the plasma membrane (Fig. 1, B to E, and movies S2 and S3). Several of 
these puncta moved over long distances (~5 m), appearing unteth-
ered to the rest of the reticular ER network (Fig. 1, C to E, and movies 
S2 and S3). Quantitation of puncta size demonstrated a mean diameter 
of 0.43 ± 0.07 m (n = 33), which was within the range of the punctate 
structures observed by STED imaging. Labeling cells with other in-
traluminal ER markers including calreticulin–enhanced yellow fluo-
rescent protein (calreticulin-EYFP) and BiP–green fluorescent protein 
(BiP-GFP) similarly revealed punctate structures in INS-1E cells 
(fig. S1, A and B). We additionally examined whether these mNeon-
KDEL–labeled puncta colocalized with Sec61, a membrane-spanning 
subunit of the ER protein translocation machinery, in cells coex-
pressing HaloTag Sec61 (Halo-Sec61) (12) labeled with Janelia 
Fluor 646 HaloTag ligand (JF646-HaloTag ligand) (13). mNeon-KDEL 
and Halo-Sec61 showed colocalization of both markers to the punc-
tate structures (Fig. 1, F and G); quantification of the mNeon-KDEL 
and Halo-Sec61 markers revealed 89% colocalization between the 
respective signals.

Next, to determine the applicability of our findings to other 
secretory cell types, we examined primary rat cortical neurons. The 
thin processes of the dendritic tree in the neuron periphery facilitate 
identification of small, dynamic structures such as ER-derived puncta. 

We therefore labeled neuronal ER with mNeon-KDEL and imaged 
the dendrites via 3D wide-field microscopy, allowing us to capture 
real-time trafficking with minimal bleaching and maximal sensitivity 
(fig. S2). We found numerous highly dynamic puncta moving along 
the length of the dendrites, analogous to the structures observed in 
INS-1E cells (fig. S2 and movies S4 and S5). Live imaging in neurons 
and INS-1E cells also revealed that some puncta appeared to stall at 
times, consistent with the behavior of other mobile intracellular 
structures such as mitochondria, which stall upon recruitment to 
sites of local translation in neurons (14). Last, these neuronal puncta 
also colocalized with Halo-Sec61. In summary, our data suggest 
that there are ER-derived punctate structures within multiple se-
cretory cell types.

Cryo-CLEM identification of RAVs
Light microscopy remains limited in its ability to provide precise 
structural details of the ER-derived puncta. These imaging methodologies 
cannot discern the shape of these structures nor reveal whether the 
puncta are individual vesicles or clusters of vesicles that move together. 
Therefore, to further characterize these structures under near-native 
conditions, we used cryo-CLEM in INS-1E cells expressing the ER 
marker calreticulin-EYFP. Cryo-light microscopy (cryo-LM) confirmed 
the presence of calreticulin-EYFP puncta (Fig. 2A). Importantly, 
the fluorescent calreticulin-EYFP puncta localized to vesicular struc-
tures with regularly distributed electron-dense particles conspicuously 
similar to mammalian ribosomes bound with their cytoplasmic face 
(Fig. 2B and movie S6). This ribosomal association agrees with colo-
calization of Sec61 to the puncta according to our live-cell imaging. 
Using cryo-EM, we also found that the vesicular organelles were 
nearly circular (eccentricity, 0.19 ± 0.02) in projection. Consequently, 
we designated these structures RAVs.

Since RAVs share a similar vesicular morphology with dense 
core secretory granules (DCSGs), which are abundant in secretory 
cells (15), we set out to test whether RAVs are a novel subset of these 
vesicles. Specifically, we asked whether a canonical DCSG marker, 
chromogranin A (CgA) tagged with enhanced green fluorescent 
protein (EGFP) (CgA-GFP) (16), colocalized with RAVs. Live 
imaging of CgA-GFP in INS-1E cells revealed a punctate expression 
pattern throughout the cytoplasm (fig. S1C), consistent with the 
established intracellular distribution of this specific secretory granule 
marker (17). We then determined whether fluorescent CgA-GFP 
puncta localized to the RAV lumen using cryo-CLEM (fig. S3, A to C). 
CgA-GFP–labeled puncta colocalized with DCSGs, granules known 
to contain CgA (16, 18), but not to RAVs (movie S7). We also found 
that a fraction of DCSGs, including those labeled with CgA-GFP, 
exhibited intraluminal crystalline structures, in line with earlier EM 
studies (fig. S3, B and C) (19, 20). The power spectrum of the 2D 
image of the crystals exhibited a hexagonal lattice (fig. S3, D to F). 
This is consistent with a 2D projection of a crystalline arrangement 
of insulin with rhombohedral symmetry, which is the previously 
described 3D arrangement of insulin crystals in vitro (21, 22). 
Notably, we did not observe these crystals in the RAVs. Since insu-
lin crystals localize to mature DCSGs (23–25), the absence of these 
crystals in RAVs suggests that this compartment is likely distinct 
from DCSGs.

Interactions between RAVs and ER
Cryo-ET imaging showed that RAVs and ER interact closely via 
direct contacts between the respective membranes of both structures 
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Fig. 1. Identification of ER-derived vesicles in secretory cells. (A) Live-cell super-resolution STED imaging of insulin-secreting INS-1E cells expressing ER marker 
mNeon-KDEL. Representative individual optical slices at different planes within the cell including the cell top (left), center (middle), and bottom (right) demonstrate 
punctate structures primarily in the cell periphery (cell top and bottom), in addition to an extensive reticular distribution throughout the cells. Scale bars, 5 m. Insets 
show enlarged images of individual mNeon-KDEL puncta (arrowheads). (B) HiLo imaging of INS-1E cells expressing mNeon-KDEL confirms numerous punctate structures 
(see movies S2 and S3). Scale bar, 2 m. (C to E) mNeon-KDEL–labeled puncta demonstrate dynamic movement throughout the cell [including within the boxed region 
in (B)] using HiLo microscopy. Movement of a mNeon-KDEL punctum is indicated by the following: (C) the horizontal line (in red) to show distance traveled (scale bar, 
2 m), (D) a kymograph of motion across time, and (E) accompanying time-lapse images that show movement at specific time points in the kymograph, as indicated by 
the red arrows (scale bar, 2 m). (F) Representative HiLo images of INS-1E cells expressing both mNeon-KDEL (in green) and ER membrane marker Halo-Sec61 (in red). 
Scale bar, 10 m. Magnified region of interest showing dual-labeled punctate structures within a peripheral process. Scale bar, 5 m. (G) Representative fluorescent line 
intensity profiles for mNeon-KDEL and Halo-Sec61 channels along the direction of the white line drawn across a puncta showing colocalization of the two ER markers. 
a.u., arbitrary units.
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Fig. 2. Visualization of ER-derived RAVs by cryo-CLEM and cryo-ET. (A) Cryo-CLEM show calreticulin-EYFP localizes to vesicles associated with ribosome-like parti-
cles termed RAVs in INS-1E cells. A cryo–tomographic slice was overlaid on an epifluorescence image with calreticulin-EYFP fluorescence in RAVs (in yellow) and Mi-
toTracker Red–labeled mitochondria (in red). Scale bar, 2 m. (B) Enlarged view of the green box in (A) with and without fluorescence overlays show calreticulin-EYFP 
fluorescence localizes to RAVs with a mitochondrion found alongside (labeled M). Pixels on the detector represent 2.6 Å at the specimen level; images are nonmontaged. 
Scale bar, 250 nm. (C) Cryo–tomographic slice demonstrating a RAV alongside a lamella of conventional ER and mitochondria (indicated by M). Light green arrows 
indicate cisternae of the ER network. Scale bar, 200 nm. (D) Isosurface of the ER-RAV association in (C) highlighting contact between the two structures (ER, light blue; RAV, 
dark blue; ribosomes, yellow). Scale bar, 200 nm. (E) Original cryo-tomographic slice featuring an enlarged view of the area highlighted in the orange box from (C). Light green 
arrows highlights an ER cisterna sandwiched between the RAV and mitochondrion (M) alongside; the orange arrow points to the site of contact between the ER network 
and RAV. Scale bar, 100 nm. (F) Isosurface showing RAV-like structures attached to ER in mouse embryonic fibroblasts (MEFs) (ER membranes, light blue; ribosomes, yellow). 
Scale bar, 200 nm. (G) Additional, enlarged isosurface view of segmented ER membranes from the yellow box in (F) highlighting attachment sites of RAV-like structures to 
ER cisternae (indicated by blue, green, and red arrows) including via three-way junctions. Scale bar, 100 nm. (H to J) Original cryo-tomographic slices featuring views of the thin 
ER tubules associated with the RAV-like structures highlighted by the respectively colored arrows in (F) and (G). Panels (A to E) in INS-1E cells; Panels (F to J) in MEFs. Scale bars, 100 nm.
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(Fig. 2, C to E). We also observed membrane contacts providing 
potential continuity between RAV-like structures and the ER network 
via thin membrane tubules (Fig. 2, F to J). In some instances, RAV-
like structures remained attached to the main ER network as part of 
three-way junctions (Fig. 2, F and G), providing further evidence 
that RAVs are related to the main ER network.

Subtomogram averaging of RAV-associated ribosomes
We used cryo-ET to confirm the identity of the putative 80S ribosomes 
bound to RAV membranes. The diameter of the electron-dense 
particles associated with the membranes of the RAVs, 320 Å, fits 
with the dimensions of mammalian ribosomes (26, 27). To determine 
the identity of the particles, we extracted subtomograms containing 
putative membrane-bound ribosomes. To avoid reference bias, we 
used reference-free alignment and averaging of subtomograms (28). 
The average of 1230 subtomograms matched well with the structure 
of a mammalian 80S ribosome (fig. S4A and movie S8). Both the 
40S and 60S ribosomal subunits were present, as well as additional 
putative components of the translational machinery, including the 
amino acid–transfer RNA (tRNA)–eukaryotic translation elongation 
factor 1a (eEF1a)–guanosine 5′-triphosphate (GTP) ternary complex. 
Within the bound ribosomal complex, densities likely to be oligo-
saccharyltransferase (OST) and translocon-associated protein (TRAP) 
complexes were associated with a putative translocon embedded 
within the RAV membrane (Fig. 3A) based on earlier studies of 
these complexes (29, 30). We determined the resolution of the average 
RAV membrane–bound complex to be 15 Å by Fourier shell correlation 
(FSC) comparison of our subtomogram average with the subtomogram 
average of the mammalian ribosome (fig. S4B) (26). Our map of the 
averaged RAV-bound 80S ribosomal complex was also fitted to a 
high-resolution atomic model of the mammalian ribosome-Sec61 
complex (31), revealing strong similarity between the structures (Fig. 3B). 
We conclude that the membrane-bound particles are indeed ribosomes, 
justifying the designation of RAVs.

Arrangement of ribosomes on RAVs
We obtained a 3D contour of the RAV membrane by manual 
segmentation of the cryo-tomogram, onto which copies of the averaged 
ribosome were mapped back at the locations and orientations where 
the individual 80S ribosomes were found (Fig. 3C). Notably, RAV-
bound ribosomes showed a spiral-like arrangement on the spherical 
membrane surface (Fig. 3D and movie S9). This spiral rosette–like 
arrangement had been previously described for mammalian polysomes 
in both conventional EM and cryo-ET studies (32, 33) and by atomic 
force microscopy (34). These ribosomes had an average nearest-
neighbor distance (NND) of 32 ± 5 nm, similar to previously reported 
NND values for human polysomes (32). Mapping of individual 
unbound ribosomes in the cytoplasm and RAV-bound ribosomes 
from cryo-tomograms revealed chains of equally spaced ribosomes 
approaching the RAV membranes from the cytoplasm (fig. S5). 
These linear strings of unbound ribosomes in the cytoplasm were 
continuous with the arrangement of RAV-bound ribosomes (fig. S5 
and movie S10). Moreover, the exit tunnels of >90% of all ribosomes 
on RAVs projected directly into the RAV lumen, including the 
ribosomes assembled as polysomes (Fig. 3, C and D). Ribosomes in 
these polysomal assemblies have long been associated with active 
translation (34–36). Therefore, the combined evidence of (i) ribosomal 
orientations, (ii) polysomal assembly, and (iii) presence of the putative 
ternary complex suggests that the RAV-bound 80S ribosomal complex 

A

C

E F

D

B

Fig. 3. Subtomogram average of RAV-bound ribosomal complex. (A) Average 
of 1362 manually selected subvolumes of RAV-bound electron-dense particles. 
Reference-free alignment reveals that these particles strongly resemble 80S 
mammalian ribosomes. Putative density assignments: yellow, 40S subunit; light 
blue, 60S subunit; purple, tRNA-eEF1a-GTP ternary complex; gray, averaged portion 
of RAV membrane associated with the bound ribosome; dark blue, translocon; green, 
TRAP; red, OST. (B) Subtomogram average fitted over a color-coded, high-resolution 
atomic model of the mammalian ribosome-Sec61 complex (EMD 2644) (31), revealing 
similarity between the structures. Yellow, 40S subunit; blue, 60S subunit; red, Sec61. 
Additional densities potentially representing OST and TRAP are also evident (in gray). 
(C) Illustration of subtomogram averaged RAV-bound ribosomes mapped onto 
their original positions on a RAV. Bound particles show an ordered spiral arrangement 
indicative of polysomes. This illustration was created by mapping a bound-
ribosome subtomogram average into the original locations of the subtomograms 
containing putative ribosomes. (D) Enlarged view of the spiral polysome arrangement. 
Orientations of ribosomal exit tunnels (in red) are depicted relative to the sphere in 
(C) and (D). (E) GFP-Sec61 localizes to RAVs by cryo-CLEM. A cryo-tomographic 
slice correlated with an epifluorescence image demonstrating GFP-Sec61 fluores-
cence in RAVs (in green) and MitoTracker Red–labeled mitochondrion (in red); 500-nm 
fiducial blue fluorospheres (in blue) are also evident. Scale bar, 2 m. (F) Enlarged 
cryo-tomogram views of the red boxed area in (E) with and without fluorescence 
overlays. GFP-Sec61 fluorescence localizes to the population of RAVs. Pixels on 
the detector represent 2.6 Å at the specimen level; images are nonmontaged. Scale 
bar, 300 nm.
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is likely translationally active. In addition, we used cryo-CLEM to 
determine whether the Sec61 translocon was present in RAV-bound 
ribosomal complexes. Using GFP-tagged Sec61 (GFP-Sec61) 
expressed in INS-1E cells, we found that GFP fluorescent signal 
localized to RAVs. Upon quantification, we found that 100% of 
GFP-Sec61 signal correlated to RAVs, enabling their identification 
via cryo-CLEM (n = 13 RAVs in two separately imaged cells) 
(Fig. 3, E and F). These data confirm the presence of the Sec61 
translocon within the RAV-bound ribosomes.

We identified a subset of RAVs with internal membranes (Fig. 3F). 
The classical ER reticulum consists of interconnected fenestrated 
membrane sheets that are linked to one another by tubules (37). We 
posit that dynamic changes within this fenestrated interconnected 
ER give rise to intraluminal vesicles that are occasionally visualized 
as internal membranes. In addition, the consistent presence of 
cytoplasmic ribosomes associated with RAV outer membranes argues 
against RAVs representing multilamellar bodies or autophagosomes. 
Comparison of RAVs with classical double-membrane autophagosomes 
demonstrates the fundamental morphological differences between 
these two classes of structures (fig. S6).

Intracellular RAV distribution
We used in situ cryo-EM to characterize the intracellular distribution 
of RAVs in relation to components of the secretory machinery, 
including secretory vesicles within INS-1E cells. Focusing on the 
thinner, cryo-EM–accessible region parts of the cell, we found that 
RAVs were consistently concentrated at the junction between the 
cell body and the base of cell protrusions in proximity to numerous 
mitochondria (Fig. 4, Ai and B). In the same region, we also found 
secretory granules that were surrounded by large numbers of 
unbound ribosomes (Fig. 4Ai). Distal to the cell junction, within the 
cell protrusion, we discerned microtubule tracks running lengthwise 
along these extensions that appeared to transport secretory granules 
and mitochondria toward the expanded tip of the protrusion 
(Fig. 4Aii). The tips of these protrusions were densely packed with 
secretory granules (Fig. 4Aiii). We also quantified the intracellular 
distribution of these organelles relative to secretory granules and 
ribosomes using stereological approaches (38–40). Secretory granules 
were significantly more concentrated in the cell protrusions and 
their tips compared to the cell body, whereas free ribosomes were 
significantly enriched in the cell body compared with the protrusion 
(P < 0.0001; fig. S7, A and B). By comparison, the highest RAV 
density was in the cell body (P = 0.0005; fig. S7C). Consistent with 
this observation, RAVs constituted 15.7% of the total vesicle pool in the 
regions of the cell body we imaged but <1% of the total vesicle pool 
in the cell protrusion tips; vesicles were defined as approximately 
spherical, membrane-bound objects discontinuous from other 
intracellular membranes.

Intracellular visualization of ER and Golgi apparatus by 
cryo-FIB milling
To visualize the ER network in thicker, central areas of the cell less 
accessible to cryo-EM, we used successive cryo-FIB milling on both 
sides of the cell to generate thin, 100- to 300-nm-thick lamellae (fig. S8). 
We found an extensive intact ER including apparent ER exit sites 
on selected cisternae that appeared to be releasing coated vesicles 
(Fig. 5A). These sites were surrounded by both coated and uncoated 
vesicles, providing a snapshot of vesicular transit within the secretory 
pathway (Fig. 5, A and B) consistent with a previous snapshot of 

vesicular transport in situ (41). Our 3D cryo-tomograms acquired 
within the cryo-FIB milled lamellae revealed that the ER and Golgi 
apparatus appear interconnected through numerous close membrane 
associations (Fig. 5B and movie S11). The fact that these two or-
ganelles exist in conformations similar to those observed earlier 
via room temperature tomography of freeze-substituted and res-
in-embedded cells (42) suggests that their structures and relative 
spatial relationships are not disrupted in our cryo-ET cell prepa-
rations. Ultimately, the presence of an intact ER network in our 
cells further argues against RAVs being generated in the experiment 
as a consequence of structural disruptions to the existing secretory 
machinery.

Cryo-FIB milling also revealed a considerable population of small 
coated and uncoated vesicles in the cell center [Fig. 5, A and B 
(ii and iii)]. In contrast, we found relatively few RAVs in the cell center 
in the vicinity of the ER and Golgi apparatus; RAVs were found 
predominantly in the cell periphery. Comparison of ER-derived coated 
vesicles with RAVs further emphasized the respective differences be-
tween these vesicular structures (Fig. 5C). Small coated vesicles in 
our cryo-tomograms had a 51.7 ± 3.7–nm diameter, consistent in 
both size and appearance with earlier reports (41). Moreover, whereas 
the size of both coated and uncoated vesicles was highly uniform, 
RAVs in INS-1E cells were larger and more heterogeneous (mean 
diameter, 496 ± 204 nm; Fig. 5D).

Visualization of RAVs in other cell types
Although our initial characterization of RAVs was in rat pancreatic 
-cell–derived INS-1E cells, we also found RAVs in cells from several 
other tissues and species. For example, RAVs were observed in primary 
human fibroblasts (fig. S9, A and B), mouse embryonic fibroblasts 
(MEFs) (fig. S9C), and human BE(2)-M17 cells, a dopamine-secreting 
neuron-derived cell line (fig. S9D) (43). As in INS-1E cells, RAVs in 
other cell types were spherical, although with smaller diameters 
(309 ± 32 nm in MEFs and 321 ± 119 nm in primary fibroblasts; 
Fig. 5D). Consistent with our earlier observations, RAVs in these 
additional cell types were primarily found in the cell periphery near 
microtubule tracks and, in some instances, near intact ER reticulum 
(fig. S9, C and D). The presence of RAVs in nonimmortalized 
primary cells and in untreated, untransfected immortalized cells 
suggests that these organelles are not an artifact of cell immortalization 
or other forms of extrinsic cell manipulations.

We independently confirmed our cryo-EM and cryo-ET findings 
via cryo–scanning transmission electron tomography (CSTET), a 
form of cryo-ET that permits us to acquire 3D views of intact, 
unfixed cells through much thicker volumes as compared to cryo-
TEM (44). Using CSTET, we also observed RAVs mainly in the cell 
periphery in two additional untreated, unfixed cell types grown 
under standard culture conditions: WI-38 human embryonic lung 
fibroblast cells (fig. S10, A and B) and human dermal microvascular 
endothelial cells (HDMECs) (fig. S10, C to E, and movie S12). 
Together, our observations suggest that RAVs are conserved across 
different species and cell types and can be observed through a wide 
variety of imaging modalities.

RAV-mitochondrial interactions
Our cryo-EM data showed that RAVs made direct contacts with mito-
chondria. At times, the membranes of the two organelles were ob-
served in close apposition (13-nm distance), such that RAV-bound 
ribosomes were excluded at the tight membrane interface (Fig. 6A). 
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In other cases, RAV and mitochondrial membranes were deformed 
to meet in an hourglass-like contact, as observed in INS-1E cells (Fig. 6B). 
This hourglass-like membrane deformation strongly resembled the 
contact sites we observed between ER and mitochondrial membranes 
(i.e., mitochondria-associated membranes, or MAMs) in MEFs (Fig. 6, C 
and D). In both cases, although the outer mitochondrial membrane 
(OMm) and RAV or ER membranes were highly distorted at the point 
of contact, reaching toward each other at sharp points, the inner mito-
chondrial membrane and mitochondrial cristae remained unaltered 

(Fig. 6E). Quantitation of RAV-mitochondrial contacts across our cryo-ET 
datasets revealed that RAV-mitochondrial interactions were present in 
25% of the cryo-tomograms, which displayed both RAVs and mitochon-
dria in the same field (in n = 26 of 104 cryo-tomograms surveyed).

Analysis of cell stress and cytotoxicity
Our data show RAVs to be a highly conserved compartment found 
across diverse cell types, species, and culture conditions. Moreover, 
we regularly observe these structures at the cell periphery, particularly 

A

2 µm

10 µm

B

500 nm

Mito

Mito

Mito

SG

SG

SG

SG

RAV

RAV

RAV

RAV

RAV
RAV

i ii iii

200 nm

Cell body Protrusion Protrusion tip

Mito

Mito
Mito

Mito

Mito

MitoMito

MT

SG

SG

SG

SG
SG

SG

SG

Fig. 4. Distribution of RAVs in the cell periphery. INS-1E cells were grown directly on EM grids. (A) Overview cryo-EM image of a thin protrusion extending from the 
periphery of the cell body and containing accumulations of secretory granules, ribosomes, and cytoskeleton. Scale bar, 2 m. Inset shows a representative phase-contrast 
image of an INS-1E cell grown on an EM grid; this image is from a different cell than the one imaged in the remainder of the figure. Scale bar, 10 m. (i) At the junction 
between the cell body and the protrusion, there are accumulations of mitochondria, small dense-core secretory granules, and RAVs. (ii) Extensive microtubule tracks run 
lengthwise along the protrusion and appear to transport secretory granules and mitochondria toward (iii) the expanded tip of the protrusion. These tips are packed with 
mature dense-core secretory granules and mitochondria and are absent of RAVs. Scale bars, 200 nm. (Note that white circles correspond to 2-m holes of the QUANTIFOIL 
holey carbon film onto which the cells are attached). (B) An additional view of the same junctional region between the cell body and protrusion highlighted in (i) featuring 
an abundance of RAVs (indicated by arrows) and free, cytoplasmic ribosomes. Scale bar, 500 nm. Pixels on the detector represent 2.6 Å at the specimen level; images are 
montaged in the overview with nonmontaged images in the remaining panels. Images are representative of n > 3 independent experiments.
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in our cryo-ET and cryo-CLEM experiments targeting ER markers. 
Nevertheless, we explored the possibility that RAVs arise primarily 
due to cytotoxicity and/or cell stress. We first examined whether 
growth of mammalian cells on gold cryo-EM grids under the conditions 

we used to image RAVs could lead to gross cellular morphological 
abnormalities or cell death. Both confocal and differential interference 
contrast (DIC) imaging of INS-1E cells grown on fibronectin-coated gold 
cryo-EM grids under the conditions used for our studies demonstrated 

A

C D

B

Endoplasmic reticulum, Golgi, uncoated vesicles
coated vesicles, microtubules

Fig. 5. Cryo-tomography of cryo-FIB milled INS-1E cells reveals the intact ER and Golgi apparatus secretory complex. (A) Cryo–tomographic slice of a cryo-FIB 
milled region in the cell center exhibiting flattened ER cisternae (labeled ER) and coated membrane sites of vesicle budding (labeled B). Alongside these apparent exit 
sites are both coated and uncoated vesicles (labeled C and U, respectively) and microtubules crisscrossing the field (labeled MT). Scale bar, 100 nm. (B) Colorized 3D seg-
mentation of the same field demonstrating interconnected ER (in blue) and Golgi apparatus (in red). Interspersed throughout are coated vesicles (in green), uncoated 
vesicles (in yellow), and microtubules (in magenta). (i to iii) Enlarged panels highlighting key structural features: (i) segmented ER cisterna within the larger ER network with 
an intact uncoated vesicle alongside; (ii) Golgi cisterna including a site of coated membrane budding with numerous uncoated vesicles nearby; (iii) additional view of the 
Golgi membrane network featuring a site of coated membrane budding and uncoated vesicles. Scale bars, 100 nm. (C) Cryo–tomographic slices comparing the appearance 
and dimensions of a RAV (~200-nm diameter) with a conventional coat protein complex (COP)–coated vesicle (~50-nm diameter). Scale bar, 100 nm (corresponds both to 
the main panel and the inset). (D) Scatter plot of the distribution of diameters of vesicular structures including RAVS across several cell types and species [rat INS-1E–coated 
vesicles, INS-1E uncoated vesicles, INS-1E RAVs, mouse embryonic fibroblast (MEF) RAVs, and human primary fibroblast RAVs]. Asterisks represent the median diameter, and 
triangles represent the mean diameter of the respective vesicles.
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adherent cells with well-defined morphology and extensive cell 
spreading (fig. S11, A to D, and movie S13); these observations were 
identical to images of healthy, proliferating INS-1E cells grown 
conventionally in tissue culture dishes (45, 46). Moreover, time-lapse 
DIC movies of grid-grown cells demonstrated the cells to be highly 
dynamic with extensive cell movement and cortical activity/remodeling 
over time (movie S13). We also tested for potential cytotoxicity 
and cell death in response to culturing cells on cryo-EM grids using a 
fluorescence-based cell viability assay. We found that >99% of INS-1E 
cells grown on cryo-EM grids for >48 hours were labeled with a green 
fluorescent calcein–AM (acetoxymethyl) viability dye, suggesting 
that the cells on the grids were viable. In contrast, cell labeling with 

red fluorescent ethidium homodimer-1, an indicator of cytotoxicity 
and cell death, was virtually absent in all fields assayed (fig. S11, 
A to D). This indicated that growth on the cryo-EM grids for extended 
periods did not induce notable cytotoxicity leading to cell death.

We determined whether growing cells on cryo-EM grids affected cell 
energy metabolism, a sensitive indicator of potential intracellular 
derangements. We examined mitochondrial respiration via oxygen 
consumption rates (OCRs) using Seahorse extracellular flux analysis in 
INS-1E cells grown directly on cryo-EM grids versus cells conventionally 
cultured in assay plates. Cryo-EM grid–grown cells exhibited no signifi-
cant differences in basal respiration compared with the control dish–
grown cells (P > 0.05; fig. S11E). Furthermore, grid-grown cells 
responded in a similar manner as dish-grown cells to mitochondrial 
stress tests examining changes in OCR in response to sequential 
inhibition of different components of mitochondrial respiration 
(fig. S11E). In parallel, we also examined whether our culture 
conditions induced ER stress in INS-1 cells, the parental cell line 
for INS-1E cells (45). We assayed for several ER stress markers 
including phospho-PKR-like ER kinase (p-PERK) and phosphorylated 
eukaryotic translation initiation factor 2 (p-eIF2) by immunoblot; 
we also measured levels of spliced X-box binding protein 1 (XBP1), 
an indicator of inositol-requiring enzyme 1 (IRE) activation, 
by reverse transcription polymerase chain reaction (RT-PCR). There 
was no evidence that these stress markers were induced in cells grown 
under our culture conditions (fig. S11, F to H). In contrast, treat-
ment with thapsigargin or tunicamycin, potent inducers of ER stress, 
caused emergence of the above stress markers within 1 hour of treat-
ment and the appearance of ER stress–induced proapoptotic tran-
scription factor C/EBP homologous transcription factor (CHOP) 
with longer treatments (fig. S11, F to H). Furthermore, while INS-1E 
cells are commonly grown in the presence of small amounts of 
-mercaptoethanol to generate a reducing environment that prevents 
accumulation of toxic oxygen radicals (45), our data show that this 
does not generate ER stress in the cells. It is highly unlikely that 
-mercaptoethanol induces RAV formation since we also observed 
RAVs in a multitude of cell types not grown in -mercaptoethanol 
including primary human fibroblasts, MEFs, BE(2)-M17 cells, WI-
38 cells, or HDMECs. By a similar rationale, it is unlikely that RAVs 
are a consequence of cell transfection since most of cells that exhibited 
RAVs were untransfected. In summary, none of these tests indicated 
that RAVs were products of abnormal cell culture conditions, growth 
on EM grids, or cell stress/toxicity.

Conventional TEM evidence of RAVs
We observed possible examples of RAVs by conventional TEM with 
the caveat that at least a fraction of these ribosome-associated structures 
may represent parts of extended ER tubules viewed in 2D cross 
section. Nevertheless, we observed putative RAVs within a peripheral 
cell extension of a WI-38 fibroblast (fig. S12) and in the periphery 
of human adrenocortical SW-13 cells (fig. S13), where we found 
multiple examples of RAV-mitochondrial interactions (fig. S13, B 
to E), consistent with our cryo-ET data. Importantly, we observed 
putative RAVs in developing primary hippocampal neurons in 
dendrites along microtubule tracks in proximity to membrane 
protrusions (fig. S14A) and within these protrusions (fig. S14A, iii). 
Examination of the perinuclear region of the neuronal cell body 
revealed intact, extensive secretory machinery including RER and 
numerous Golgi stacks (fig. S14B), suggesting that the putative RAVs 
were not simply the result of ER vesiculation in primary neurons.

A

C

E

D

B

Fig. 6. RAV- and ER-mitochondrial interactions imaged by cryo-EM and cryo-ET. 
(A) Cryo-EM image of interactions between RAVs and nearby mitochondria (labeled 
M) in INS-1E cells. Inset shows enlarged view of the interface between RAV and 
mitochondrial membranes. Note the absence of ribosomes at the tight interface 
(13-nm width). Scale bar, 500 nm. (B) Site of RAV-mitochondrion interaction in 
which RAV and mitochondrial membranes extend, acquiring an “hourglass-like” 
morphology at the single point of contact (within the boxed area). Scale bar, 
500 nm. (C) Cryo–tomographic slice of a MEF, revealing an ER-mitochondrial contact 
site. Scale bar, 500 nm. (D) Segmentation of the ER-mitochondrial association in 
MEFs highlighting a similar hourglass-like point of membrane contact (ER, dark blue; 
mitochondrion, light blue) point of contact. (E) Enlarged view of the ER-mitochondrial 
contact in (C) showing the extension and deformation of both the OMm and ER 
membrane. Both the inner mitochondrial membrane (IMm) and mitochondrial 
cristae remain unchanged.
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Evidence of RAVs in prior studies
The conservation of RAVs across diverse cell types and species as 
well as via different imaging approaches raises the question: If these 
organelles are widespread, at least in secretory cells, then why have 
they not been described in the literature thus far? We found numerous 
examples of RAVs in conventional TEM micrographs as well as in 
cryo-EM and cryo-ET data within the published literature (fig. S15). 
However, in earlier studies, the presence of RAVs was either not 
explicitly commented upon or analyzed. Alternatively, RAVs were 
identified as RER, despite their vesicular, nonreticular morphology. For 
example, Medalia and colleagues (47) demonstrated structures entirely 
consistent with RAVs in the peripheral region of a Dictyostelium 
discoideum cell, simply terming these structures “ER.” Both conven-
tional TEM (fig. S15A) and cryo-ET (fig. S15, B to D) provided 
2D and 3D evidence of RAVs, respectively, in Dictyostelium discoideum 
(note the similarity between the RAV from Dictyostelium in fig. S15D 
and our 3D reconstructions of RAVs in fig. S5). Importantly, the pres-
ence of RAVs in Dictyostelium, a cell type that was simply placed 
on the grids shortly before cryo-preservation, further supports the 
idea that these structures are physiologically relevant rather than 
an artifact of culture conditions. We similarly found several oth-
er examples of RAVs in earlier cryo-ET studies of MEFs (fig. S15E), 
as well as putative RAVs in TEM imaging of high-pressure frozen, 
freeze-substituted cells including human HepG2 human hepatoblastoma 
cells (fig. S15F) and African green monkey Vero kidney epithelial 
cells (fig. S15G).

DISCUSSION
We characterized RAVs through a combination of light and EM 
imaging modalities across several scales of resolution. At the light 
level, our live-cell STED, HiLo, and wide-field imaging data in both 
INS-1E cells and primary neurons reveal the presence of dynamic 
ER-derived puncta, especially in the cell periphery. Colocalization 
of these apparently punctate structures with both luminal and 
membrane ER markers strongly suggests that these structures 
represent a subset of the ER. While it may be challenging to definitively 
distinguish some of the punctate structures from components of ER 
tubules by light microscopy approaches, especially within individual 
optical planes, at the electron microscopy level, cryo-ET definitively 
revealed the presence of isolated spherical vesicles decorated by 
actively translating ribosomes that we termed RAVs.

Cryo-ET– and cryo-FIB milled data revealed that RAVs coexist 
with an intact ER network within cells. These findings, together 
with analyses showing the absence of major cell stress in our samples, 
suggested that the presence of RAVs was not a direct consequence 
of stress-induced disruption of the ER. Nevertheless, we cannot rule 
out the possibility that constitutive secretory activity and its effects 
on ER structure and function may contribute to RAV formation or 
numbers. Many components of the protein folding and quality 
control machinery are endogenously up-regulated to maintain ER 
function in response to the high levels of protein translation and secre-
tion found in cells specialized for secretion (48, 49). Therefore, while 
these physiological states may catalyze emergence of RAVs from 
the ER, on a functional level, RAVs may represent a new mecha-
nism by which secretory cells keep up rapidly with the intensive 
demands of protein synthesis, especially in a highly localized manner. 
Furthermore, since protein synthesis demands are often cell type 
specific (50), this may explain the relative heterogeneity of RAVs in 

terms of size, shape, and/or numbers across different cell types and 
species that we observed both in the earlier literature and in our own 
data. Membrane-bound organelles such as the ER and mitochondria 
are highly dynamic, capable of changing morphology, size, and 
numbers in response to the specific protein synthesis requirements 
of different cell types or cell states (e.g., periods of heightened cellular 
activity) (51–53).

The mechanisms by which RAVs emerge from the ER are unknown. 
We suggest that changes in local membrane curvature along the ER 
tubular membrane network give rise to RAVs. Previous studies 
proposed that the cooperative interplay of ER membranes with 
curvature-stabilizing proteins including reticulons, lunapark protein, 
and the membrane-fusing guanosine triphosphatase (GTPase) atlastin 
is important in the shaping and remodeling of the tubular ER membrane 
network (54–56). Consistent with this, dominant-negative GTPase-
defective atlastin mutants produced long, unbranched ER membrane 
tubules along with ER-derived vesicles (56). The presence of these 
RAV-like structures along ER tubular junctions, sites that favor 
localization of curvature-stabilizing proteins such as lunapark (55), 
also suggests involvement of the ER-shaping machinery in RAV 
biogenesis. It is therefore possible that changes in the relative 
stoichiometry, function, and/or membrane distribution of the ER-
shaping machinery lead to alterations in ER membrane curvature 
that are energetically favorable for RAV formation.

In developing neurons, our visualization of RAVs localized to 
dendrites may be relevant to the emerging understanding of local 
translation. Local translation is increasingly recognized as an essential 
contributor to activity-dependent synaptic plasticity and neuron 
remodeling (57, 58). Despite thousands of mRNAs trafficked to 
dendrites presumably for site-specific translation, the machinery 
for local translation of the protein products remains poorly defined 
(59). RAVs may therefore represent a new mechanism for local 
translation, facilitating functional coupling between cell activity 
and protein synthesis at defined sites in the cell periphery. RAV-driven 
local translation in dendrites would require less time and energy 
than the traffic of mRNAs or translated products from conventional 
ER in the cell body.

The relationship of RAVs with mitochondria may provide further 
insights into RAV function. We show that the membranes of both 
RAVs and mitochondria can link to each other at sites of contact, 
mirroring ER-mitochondrial MAMs (60, 61). Similar to MAMs, it is 
therefore possible that RAV-mitochondrial contacts may play critical 
roles in functions including membrane biogenesis and Ca2+ signaling 
(62, 63). Consistent with our findings, earlier work reported contacts 
between mobile ER-derived structures and mitochondria, implicating 
these interactions in Ca2+ exchange between the two organelles (64). 
Similarly, studies in dendrites of hippocampal neurons described a 
dynamic vesicular ER subcompartment that may serve as a highly 
mobile Ca2+ storage site (65). Collectively, these findings suggest 
that mobile ER-derived compartments, including RAVs, may be 
responsible for spatial and temporal regulation of local translation, Ca2+ 
signaling, and mitochondrial function—processes that fundamentally 
contribute to activity-dependent plasticity (64, 66). This work raises 
a number of important questions, including whether the ribosomes 
associated with RAVs translate a unique subset of proteins and 
whether these structures bear specific targeting machinery different 
from conventional ER for this translation. Future work will also 
define the mechanisms responsible for mRNA trafficking to 
specific sites of RAV-driven local translation as well for the 
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membrane deformations producing RAV-mitochondrial membrane 
contact sites.

MATERIALS AND METHODS
Reagents
Chemicals
All chemicals used in the present study were purchased from 
Sigma-Aldrich (St. Louis, MO). MitoTracker Red was purchased 
from Thermo Fisher Scientific (Pittsburgh, PA). JF646-HaloTag ligand 
was provided by L. Lavis (Janelia Research Campus, Howard Hughes 
Medical Institute, Ashburn, VA) and was derived from previously 
reported parent compounds (13).
DNA constructs
mNeon-KDEL consists of a leader sequence from mouse immuno-
globulin  light chain 5′ to mNeonGreen, followed by a KDEL ER 
retrieval sequence 3′ to the fluorophore. BiP-GFP contains at the 
5′ end a hamster BiP signal sequence, followed by the hamster BiP com-
plementary DNA (cDNA) sequence fused to superfolder GFP (sfGFP), 
followed by a KDEL ER retrieval sequence at the 3′ end (i.e., 5′-ham-
ster signal sequence-hamster BiP cDNA-sfGFP-KDEL-3′; gift of 
E. Snapp, Janelia Research Campus, Ashburn, VA). Calreticulin-EY-
FP consists of the calreticulin signal sequence immediately 5′ to the 
EYFP gene, followed by a KDEL ER retrieval sequence at the 3′ end 
(pEYFP-ER; Clontech Laboratories Inc., Mountain View, CA). 
Sec61-based constructs were described earlier including Halo-Sec61 
(gift of J. Bewersdorf, Yale University) (12) and GFP-Sec61 (67, 68). 
Phosphatidylinositol synthase (PIS)–GFP consists of human PIS 
fused to EGFP at the 3′ end and was described in detail previously 
(69). CgA-GFP consists of full-length human CgA tagged with 
EGFP at its 3′ end as described previously (16).

Animal husbandry
Animals were housed and handled in accordance with all appropriate 
NIH guidelines through the University of Pittsburgh Institutional 
Animal Care and Use Committee (IACUC). We abided by all appro-
priate animal care guidelines including ARRIVE (Animal Research: 
Reporting of In Vivo Experiments) guidelines for reporting animal 
research (70, 71). Rats were housed in cages with a 12:12 light:dark 
cycle and had access to food and water ad libitum at all times. Studies 
were performed in accordance with a University of Pittsburgh IACUC–
approved protocol (#19024465), and all efforts were made to ame-
liorate animal suffering.

Tissue culture
Cell line culture
Rat INS-1E cells (gift of P. Maechler, Université de Genève) were 
cultured in Roswell Park Memorial Institute (RPMI) 1640 medium (Life 
Technologies, Grand Island, NY) supplemented with 2 mM l-glu-
tamine, 5% heat-inactivated fetal bovine serum, 10 mM Hepes, pen-
icillin (100 U/ml), streptomycin (100 g/ml), 1 mM sodium pyruvate, 
and 50 M -mercaptoethanol as described earlier (45) (termed 
complete serum-supplemented RPMI 1640 medium). All INS-1E 
cells used here were found negative for mycoplasma contamination. 
Primary human fibroblasts were cultured in Dulbecco’s modified 
Eagle’s medium (DMEM) (Life Technologies) supplemented with 
15% fetal bovine serum, 1 mM sodium pyruvate, 1% Minimum 
Essential Medium (MEM) vitamin solution (Thermo Fisher Scientific), 
and 1% antibiotic-antimycotic solution (Thermo Fisher Scientific). 

MEF cells were maintained in DMEM supplemented with 10% 
fetal bovine serum, penicillin (10 U/ml), and streptomycin (10 g/ml) 
(Life Technologies). Human neuroblastoma BE(2)-M17 cells (CRL-2267, 
American Type Culture Collection, Manassas, VA) were cultured in 
Opti-MEM medium (Life Technologies) supplemented with 10% 
fetal bovine serum, 2 mM glutamine, penicillin (100 U/ml), and strepto-
mycin (100 g/ml). Human adrenocortical SW-13 cells were cultured 
in L-15 medium supplemented with 10% fetal calf serum, penicillin 
(0.06 mg/ml), streptomycin (100 g/ml), and Fungizone (10 g/ml), 
buffered with l-arginine at pH 7.4 (Invitrogen, Carlsbad, CA). 
Embryonic lung fibroblast WI-38 cells were cultured in minimal 
essential medium (Gibco, Gaithersburg, MD) supplemented with 
15% fetal calf serum, l-glutamine, and penicillin/streptomycin. 
HDMECs (gift of R. Alon, Weizmann Institute) were grown in 
endothelial cell growth medium (PromoCell, Heidelberg, Germany). All 
cell lines were maintained in a humidified 37°C incubator with 5% CO2.
Primary neuron culture
Dissociated rat cortical interneurons were isolated and cultured as 
described previously (72). Briefly, cortical neurons were prepared from 
embryonic day 18 (E18) Long-Evans rats (Charles River Laboratories, 
Wilmington, MA). Cortical neurons were plated onto 35-mm-
diameter circular glass-bottom dishes (MatTek, Ashland, MA) coated 
with poly-d-lysine (20 g/ml) and laminin (3.4 g/ml) at a density of 
3.25 × 105 cells/ml (total volume, 2 ml). The neurons were maintained 
in neurobasal medium supplemented with B27, penicillin/streptomycin 
(100 U/ml and 100 mg/ml, respectively), and 2 mM glutamine. 
One-fifth of the medium in each dish was replaced every 4 days. 
Dissociated rat hippocampal neurons were cultured as described 
previously (73–75). Briefly, hippocampal neurons were obtained 
from E18 Sprague-Dawley rats and plated onto poly-l-lysine–coated 
glass coverslips inverted over a glial feeder layer after 2-hour incubation. 
Cells were cultured at low density (2700 cells/cm2) so that axons 
and dendrites from individual neurons did not overlap. Paraffin 
dots attached to the coverslips kept neurons separated from the glial 
feeder cells. Neurons were subsequently processed for TEM between 
1 and 2 days in vitro (DIV). All neurons were maintained in a 
humidified 37°C incubator with 5% CO2.
Primary fibroblast culture
We obtained skin fibroblasts from a healthy human individual as 
described previously (gift of M. Hirano, Columbia University) (76, 77). 
Skin biopsy to obtain the fibroblast cells was only performed follow-
ing informed consent, and all studies were performed in accordance 
with a Columbia University Medical Center Institutional Review 
Board–approved protocol (#AAAJ8651). Fibroblasts were cultured in 
DMEM supplemented with 15% fetal bovine serum (Sigma-Aldrich), 
1% vitamin solution, and 1% antibiotic-antimycotic solution (Thermo 
Fisher Scientific). All experiments were conducted on cells cultured 
for <15 passages.

Live-cell imaging
STED microscopy
Live-cell STED microscopy was conducted on a Leica SP8 STED 
3× microscope (Leica Microsystems, Wetzlar, Germany) equipped 
with a SuperK EXTREME EXW-12 pulsed white light laser (NKT 
Photonics Inc., Portland, OR) as an excitation source, a Katana-
08HP pulsed depletion laser as a depletion light source (775 nm; 
NKT Photonics), and a Leica high-contrast plan apochromat 93× 
1.30 numerical aperture (NA) glycerol CS2 objective with motorized 
correction collar (Leica Microsystems); imaging was controlled 
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by Leica Application Suite X software (LAS X, Leica Microsystems). 
Cells were imaged in a temperature-controlled Tokai Hit microscope 
stage top incubator (Amuza Inc., San Diego, CA) set to 37°C with 
5% CO2. mNeon-KDEL was imaged with 505-nm excitation and 
775-nm depletion wavelengths. The detection gate was set at 0.3 to 
6 ns with a hybrid detector. Forty-nanometer pixel size was chosen 
on the basis of the Nyquist sampling criterion. All live-cell image 
stacks were acquired with 2× line averaging and 0.1-m z-steps with 
30 ms per frame. Image deconvolution was performed to remove 
noise via the classic maximum likelihood estimation deconvolution 
algorithm using Huygens Professional software (version 16.10, 
Scientific Volume Imaging, Hilversum, the Netherlands) as described 
previously (78). Deconvolution of the original raw image data was 
limited to 20 iterations of processing.
HiLo microscopy
HiLo microscopy was conducted on a Nikon TiE fully motorized 
inverted microscope equipped with a 100× 1.49 NA TIRF lens. 
Illumination used a 488-nm laser at an incident angle that allowed 
the lower ~0.5 m of the cell to be imaged. Images were collected 
using a 3-mm stress-free dichroic with a 488-nm notch reflection 
and a 505/20-nm emission filter. Images were collected with a 
Photometrics 95B backthinned complementary metal-oxide semi-
conductor (CMOS) camera at 10 frames/s using NIS-Elements 
(version 5.2). All images were collected from samples mounted in a 
Tokai Hit environmental chamber set to 37°C with 5% CO2. Subsequent 
image analysis included a modified Richardson-Lucy deconvolution 
step adapted to work on 2D images (with a predicted point spread 
function). No other processing was performed to images. Kymographs 
of the images were generated using NIS-Elements. Colocalization 
of mNeon-KDEL and Halo-Sec61 signals was quantified via NIS-
Elements by first applying the Richardson-Lucy deconvolution 
algorithm, followed by subsequent segmentation to accurately 
define positive signal for both channels. We then determined the 
percentage of the signal from the 640-nm channel (Halo-Sec61) 
that colocalized to the 488-nm channel (mNeon-KDEL).
High-speed wide-field 3D microscopy
High-speed wide-field 3D images were acquired on a Nikon TiE 
microscope equipped with a 100× 1.49 NA TIRF objective and a 
Lumencor Spectra X (470-nm illumination) Photometrics 95B 
scientific CMOS (sCMOS) camera (Lumencor Inc., Beaverton, OR). 
Samples were mounted in a Tokai Hit environmental chamber 
(37°C with 5% CO2) and imaged as 3D stacks (20 frames/s, 0.8 s 
per stack,12-ms exposure, 15 z positions, 0.3-m separation). An 
extended depth of focus projection was generated for each time 
point. No other processing was performed to images. During imaging 
of neurons, low magnification of the cells was used to distinguish 
neuronal axons from dendrites based on their established distinctive 
morphologies (e.g., identification of the axon initial segment that 
gives rise to the axon). Once identified, images of dendrites were 
subsequently acquired. Kymographs of the images were generated 
using NIS-Elements.
Cell viability imaging
INS-1E cells were seeded onto fibronectin-coated QUANTIFOIL 
gold London-finder EM grids with the grids placed into 35-mm-
diameter circular glass-bottom dishes (MatTek). Cells were cultured 
for 48 hours under standard conditions in complete, serum-containing 
RMPI 1640 medium. To determine whether cells remained viable 
following this period, the grid-associated cells were labeled using 
the fluorescence-based LIVE/DEAD cell viability assay (Thermo 

Fisher Scientific) according to the manufacturer’s instructions. 
Samples were then mounted in a Tokai Hit environmental chamber 
(37°C with 5% CO2) and imaged by confocal microscopy using a 
Nikon Eclipse Ti imaging system equipped with a 1.40 NA 60× 
objective lens and swept field confocal scan head (Prairie Instruments, 
Madison, WI). For overnight imaging of cells grown on cryo-EM grids, 
dishes containing the grids were imaged in a humidified 37°C environ-
mental chamber in the presence of a 20% O2, 5% CO2, and nitrogen-
balanced gas mixture. Following confocal fluorescent imaging, cells 
were imaged using DIC microscopy overnight at 30-min intervals.
Cell preparation and transfection
INS-1E cells were plated onto poly-d-lysine–coated 35-mm circular 
glass-bottom dishes (MatTek) at a density of 4 × 105 cells per dish 
and cultured for 48 hours in complete, serum-containing RPMI 
1640 medium (37°C with 5% CO2). Cells were transfected with 
respective DNA constructs using Lipofectamine 3000 (Invitrogen) 
according to the manufacturer’s instructions. Imaging occurred 14 to 
18 hours after transfection in either complete serum-supplemented 
RPMI 1640 medium (HiLo, wide-field, and DIC) or serum-supplemented 
FluoroBrite DMEM imaging medium (Thermo Fisher Scientific) 
(STED) to maintain optimal cell health throughout imaging. Primary 
rat cortical neurons were plated onto MatTek 35-mm circular glass-
bottom dishes coated with poly-d-lysine and laminin following 
isolation (see above). Neurons were transfected at DIV7 with 
Lipofectamine 3000 and imaged 14 hours later (DIV8) in complete 
culture medium. To label Halo-Sec61–expressing cells, cells were 
incubated with 500 nM JF646-HaloTag ligand (in serum-supplemented 
complete medium) for 1 hour (37°C with 5% CO2), washed extensively, 
and placed into complete serum-supplemented RPMI 1640 culture 
medium for imaging.

EM grid preparation
Cryo-EM and cryo-ET
INS-1E cells were plated onto either fibronectin-coated 200 mesh 
gold R2/1 QUANTIFOIL grids or 200 mesh gold R2/2 London finder 
QUANTIFOIL grids (Quantifoil Micro Tools GmbH, Jena, Germany) 
at a density of 2 × 105 cells/ml. Cells were cultured on the grids for 
48 hours under conventional culture conditions in complete, serum-
containing RPMI 1640 medium as described earlier (45). Grids 
were then removed directly from culture medium and immediately 
plunge-frozen in liquid ethane using a Vitrobot Mark IV (Thermo 
Fisher Scientific, FEI, Hillsboro, OR). Similarly, for all other cell types 
imaged by cryo-EM and cryo-ET including MEFs and BE(2)-M17 
cells, cells were plunge-frozen immediately after being removed 
from their respective complete culture medium; a subset of MEF sam-
ples were exposed to tunicamycin for induction of ER-mitochondrial 
MAM contacts before plunge-freezing. For cell transfections of grid-
grown cells, INS-1E cells were plated onto fibronectin-coated gold 
QUANTIFOIL grids and cultured for 24 to 48 hours in complete, 
serum-containing RPMI 1640 medium under standard culture 
conditions (37°C with 5% CO2). The cells were then transfected 
with the respective DNA constructs using Lipofectamine 2000 
(Life Technologies) according to the manufacturer’s instructions. 
The cells were plunge frozen following overnight incubation in complete, 
serum-containing RPMI 1640 medium.
CSTET
WI-38 cells and HDMECs were grown on EM grids as described 
previously (44). Briefly, cells were plated on gold QUANTIFOIL 
grids and grown to 30 to 70% confluence, typically over 2 to 3 days. 
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The cells were subsequently vitrified in liquid ethane using a Leica 
EM GP plunger and stored in liquid nitrogen until use.

Cryo–electron microscopy
Cryo-EM images of INS-1E cells were recorded at ×10,000 and 
×12,000 magnifications at 2× binning (21.7 and 18.1 Å, respectively) 
on the JEOL3200 FSC electron microscope (JEOL Ltd., Tokyo, Japan) 
at 300 kV using an in-column omega energy filter with zero-loss 
peak set to a slit width of 20 eV. Large cell areas were mapped as 
montages using SerialEM (Boulder Laboratory for 3-D Electron 
Microscopy of Cells, Boulder, CO). Images were recorded on a Gatan 
US4000 charge-coupled device (CCD) camera at 2× binning for 
improved contrast (Gatan Inc., Pleasanton, CA). Tomographic tilt 
series for INS-1E, MEF, and primary human fibroblast cells were 
recorded on a FEI Polara F30 electron microscope (Thermo Fisher 
Scientific-FEI) at 300 kV with a tilt range of ±60° in 1.5° increments 
using the Gatan K2 Summit direct detector (Gatan Inc.) in super-
resolution mode at 2× binning to 2.6 Å per pixel; tilt series were 
acquired via SerialEM. Tomographic tilt series for MEFs were collected 
on a FEI G2 Polara 300-kV field emission gun (FEG) TEM equipped 
with an energy filter (slit width, 20 eV; Gatan Inc.) with a tilt range 
of ±60° in 1° increments and a 4k × 4k K2 Summit camera (Gatan 
Inc.) in counting mode at 2.6 Å per pixel. For BE(2)-M17 cells, to-
mographic tilt series were recorded at ×10,000 magnification on the 
JEOL3200 FSC electron microscope at 300 kV. Tilt series were col-
lected with a tilt range of ±60° with 2° increments using the Direct 
Electron DE20 detector (Direct Electron LP, San Diego, CA) at 
7.4 Å per pixel using SerialEM. The cumulative dose of each tilt 
series was 80 to 100 e−/Å2. Tilt series were subsequently aligned and 
reconstructed using the IMOD software package (79).

Cryo-correlated light and electron microscopy
INS-lE cells were grown on 200 mesh gold R2/2 London finder 
QUANTIFOIL grids (Quantifoil Micro Tools GmbH) coated with 
fibronectin and plunge-frozen in liquid ethane using an FEI Vitrobot 
Mark IV (Thermo Fisher Scientific, FE). Immediately before plunge-
freezing, 3 l of a fluorescent microsphere/gold solution was applied 
to grids. Five hundred–nanometer (345/435 nm) blue polystyrene 
fluoropheres (Phosphorex Inc., Hopkinton, MA) were diluted in 
phosphate-buffered saline (PBS) and mixed with 20-nm colloidal gold 
(Sigma-Aldrich) pretreated with bovine serum albumin. This combi-
nation of blue fluorospheres and 20-nm colloidal gold was used as 
fiducial markers. Specifically, 20-nm colloidal gold was used during 
cryo-tomogram reconstruction, while the 500-nm blue fluorescent 
beads, with detectable fluorescent emission in both blue and green 
channels, were used along with the centroids of autofluorescent puncta 
to align all fluorescent images. The 500-nm blue fluorospheres also 
served as landmarks to map the location of target areas based on 
phase-contrast and low-magnification cryo-EM images and also served 
as reference points to correlate the fluorescent light microscope (FLM) 
and cryo-EM images. Frozen grids were subsequently loaded into 
Polara EM cartridges, transferred into a cryo-FLM stage [FEI Cryo-
stage (80), modified to hold Polara EM cartridges (81)] mounted on 
a Nikon Ti inverted microscope, and imaged using a 60× extra long 
working distance (ELWD) air objective (Nikon CFI S Plan Fluor 
ELWD 60× NA 0.7, WD 2.62 to 1.8 mm) and a Neo 5.5 sCMOS 
camera (Andor Technology, South Windsor, CT), with a real-time 
deconvolution module using NIS-Elements software. Following cryo–
light microscopy imaging, EM cartridges containing frozen grids 

were stored in liquid nitrogen and maintained at ≤−150°C through-
out, including transfer and imaging. Grids were imaged using an 
FEI G2 Polara 300 kV FEG TEM equipped with an energy filter (slit 
width, 20 eV; Gatan Inc.) and a 4k × 4k K2 Summit camera (Gatan 
Inc.) using electron counting mode. Pixels on the detector repre-
sented 2.6 Å (41,000×) at the specimen level. Tilt series were recorded 
with a tilt range of ±60° in 1° increments and 10-m underfocus. 
The cumulative dose of a tilt series was 80 to 100 e−/Å2. UCSF Tomo 
(82) was used for automatic acquisition of the tilt series. The tilt 
series were aligned and binned fourfold into 1k × 1k arrays using 
the IMOD software package (79). Red and either green or yellow 
(depending on the fluorophore) FLM images were collected using 
2-s exposures. To overlay the cryo-tomograms onto the FLM and 
phase-contrast images, low-magnification EM images of the target 
area were acquired to locate surrounding clusters of 500-nm blue flu-
oropheres. Phase-contrast and FLM images were then rescaled using 
Abode Photoshop CS6 software (Adobe Systems, San Jose, CA) to match 
the EM images based on 500-nm blue fluorospheres and landmarks 
including 2-m QUANTIFOIL holes. The cryo-tomograms were 
overlaid and correlated with the epifluorescent image using features 
such as crystalline ice and the 2-m-diameter EM grid holes seen in 
both the cryo-tomogram and low-magnification EM image to form 
the final composite image.

Cryo-FIB milling
Specimen thinning
Cryo–light microscopy of cells expressing ER-localized PIS-GFP 
guided cryo-FIB milling to regions of interest in the x-y plane. 
Plunge-frozen grids were then mounted in custom-modified Po-
lara cartridges with channels milled through the bottom. This al-
lowed samples to be milled at a low angle of incidence (∼10° to 12°) 
with respect to the carbon surface. These modified cartridges were 
transferred into an FEI Versa 3D equipped with a Quorum PP3010T 
Cryo-FIB/SEM preparation system (Quorum Technologies LLC, 
East Sussex, UK). The stage temperature was held at −183°C for all 
subsequent steps. Samples were sputter coated with 20 nm of plati-
num before milling to minimize curtaining and to protect the front 
edge of the sample during milling. Vitrified cells lying approximately 
perpendicular to the focused ion beam were located via SEM, and lamellae 
(∼12 m wide and ∼2 m thick) were rough milled with beam settings 
of 30 kV and 0.300 nA. A polishing mill at a reduced current of 30 pA 
was then performed to bring the final thickness to 150 to 400 nm. Samples 
were removed from the cryo-FIB/SEM while maintaining a tempera-
ture below −160°C and stored in liquid nitrogen until use (83).
Cryo-ET of cryo-FIB milled specimens
The cryo-EM grid, still in the modified Polara cartridge, was insert-
ed into a FEI Polara F30 microscope operating at 300 kV equipped 
with an energy filter (slit width, 20 eV; Gatan Inc.) and a 4k × 4k K2 
Summit direct detector using the direct electron counting mode 
(Gatan Inc.). Lamellae were located by making maps of the entire 
grid using SerialEM software (84). Pixels on the detector represent-
ed 6 nm (18,000×) at the specimen level. Tilt series were collected 
with a tilt range of ±60° in 1° increments and 4-m underfocus 
using SerialEM software (84). The tilt series were aligned and binned 
by 4 into 1k × 1k using the IMOD software package (79), and 3D re-
constructions were calculated using the simultaneous reconstruc-
tion technique implemented in the TOMO3D software package 
(85) or weighted back projection using IMOD. Cryo-tomograms 
were subsequently segmented using the Amira software package 
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(Thermo Fisher Scientific, FEI). Segmentation was performed manu-
ally using density thresholds. Morphological measurements of seg-
mented data were also performed in Amira. Movie image sequences 
were generated in JPEG format in Amira (Thermo Fisher Scientific, 
FEI) and converted into movies using QuickTime Player 7. Photoshop 
CS6 (Adobe) was then used to produce the final versions of the movies.

Cryo–scanning transmission electron tomography
CSTET of WI-38 cells and HDMECs was performed as described 
previously (44). Briefly, bright-field STEM tomograms of both cell 
types were collected on a Tecnai F20 microscope (Thermo Fisher 
Scientific, FEI) at 200 kV, recorded in 2° increments between 
−60° and +60° tilts. Spatial sampling was set between 1 and 4 nm per 
pixel. Doses were limited to 1 to 3 e−/Å2.

Computation
2D image analyses
Images were analyzed in 3DMOD (79) (Boulder Laboratory for 3-D 
Electron Microscopy of Cells, Boulder, CO) and Fiji/ImageJ (NIH, 
Bethesda, MD). Montages were aligned and stitched using the 
SerialEM “blendmont” command. We used blinded raters for 
image analysis and used an in-house MATLAB script to establish 
identity of the respective organelles including secretory vesicles and 
RAVs based on a majority vote of the raters. Similarly, the intracellular 
distribution of organelles (including secretory vesicles, RAVs, and 
ribosomes) within the 2D images was analyzed using the IMOD 
software package based on established stereological approaches 
(38–40). Specifically, fields of defined areas were chosen in the cell body, 
protrusions, and protrusion tips; organelles within these respective areas 
were counted. Results were represented as the density of organelles 
per nm2 and calculated from at least five separate experiments.

Imaged 2D crystalline arrays within the secretory granule lumen 
were analyzed using the 2dx software package (86). Filtered images 
of crystalline arrays were created by masking the diffraction spots 
from the Fourier transforms.
Volume reconstruction, subtomogram extraction, alignment, 
and averaging
Alignment and weighted back-projection of tilt series were per-
formed with SerialEM’s ETOMO program. Manual selection of 
subvolumes containing putative ribosomes was conducted on an 
8× binned map using EMAN2’s Boxer program (87). Subtomograms 
were normalized, contrast-inverted, and placed into a Hierarchical 
Data Format (HDF) stack. To rule out reference bias, we conducted 
reference-free alignment and averaging of 3D subvolumes corre-
sponding to the RAV membrane–bound particles using the ML_TOMO 
program within the Xmipp software package as previously described 
(28, 88). Briefly, this program permits alignment and classification of 
3D images with missing data regions in Fourier space by a 3D mul-
tireference refinement based on a maximum-likelihood target function, 
starting from random assignments of the orientations.

To estimate the resolution of the subtomogram average of RAV 
membrane–bound 80S ribosomes visualized in situ, we used the 
FSC to compare our subtomogram average with the subtomogram 
average of dog (Canis lupus familiaris) 80S ribosomes associated with 
pancreatic ER obtained by the Förster group (26) (EMD-3071). As 
the maps are entirely independent, we used a threshold of 0.143.
Analysis of subtomograms
The subtomograms containing putative RAV membrane–bound 
ribosomes were aligned separately according to the reference-free 

approach as described above. Image segmentation to delineate the 
RAV membrane was manually conducted using Amira software. 
The average distance between RAV-bound ribosomes was determined 
through in-house nearest-neighbor calculations using the coordinates 
of the segmented, bound ribosomes in Amira. Because of the 
missing wedge effect in cryo-ET, which leads to a loss of resolution 
in the z direction, the membranes shown in fig. S5 appear as barrels 
rather than spheres. The orientation of the protein exit tunnel 
with respect to the membrane was determined by aligning a high-
resolution human 80S ribosome cryo-EM map where the location 
of the exit tunnel is known; the map was obtained from subtomogram 
averaging.

Transmission electron microscopy
WI-38 cells
Human embryonic lung fibroblast–derived WI-38 cells were imaged 
by conventional TEM as described earlier (44). Briefly, cells were 
grown on glass coverslips, fixed with 2.5% glutaraldehyde and 
2% paraformaldehyde (in 0.1 M sodium cacodylate buffer at 25°C), 
washed in cacodylate buffer (4°C), and stained with 1% osmium 
tetroxide and 2% uranyl acetate. Samples were dehydrated in cold 
ethanol and embedded in Epon. Upon removal of the glass coverslips 
with liquid nitrogen, ultrathin sections (~70 nm) were cut parallel 
to the coverslip surface and transferred to 200 mesh copper grids. 
Sections were imaged in a 120 kV FEI Tecnai Spirit T-12 equipped 
with a 2k Eagle CCD camera (Thermo Fisher Scientific, FEI).
SW-13 cells
TEM imaging of human adrenocortical SW-13 cells was described 
earlier (89). Briefly, cell monolayers were rinsed in PBS, fixed with 
2.5% glutaraldehyde [in PBS (pH 7.4) for 1 h at 25°C), and postfixed 
in 1% osmium tetroxide with 1% potassium ferricyanide (for 1 hour 
at 4°C). Samples were dehydrated in ethanol and embedded in 
Epon. Ultrathin sections were cut, mounted on grids, and imaged 
on a JEOL 1011CX electron microscope (JEOL, Tokyo, Japan).
Primary hippocampal neurons
For TEM of primary hippocampal neurons, specimens were fixed in 
cold 2.5% glutaraldehyde (in 0.01 M PBS), postfixed in 1% osmium 
tetroxide with 1% potassium ferricyanide, washed in PBS, and 
dehydrated through a graded series of ethanol and propylene oxide 
steps. Samples were embedded in Poly/Bed 812 (Luft formulations, 
Polysciences Inc., Warrington, PA). Semithin sections (300 nm) 
were cut on a Leica Reichert Ultracut ultramicrotome and stained 
with 0.5% Toluidine blue (in 1% sodium borate). Ultrathin sections 
(65 nm) were subsequently stained with uranyl acetate and Reynold’s 
lead citrate and examined on a JEOL 1011 transmission electron 
microscope with a side mount AMT 2k digital camera (Advanced 
Microscopy Techniques, Danvers, MA).

Metabolic analyses
INS-1E cells were seeded either into individual wells of a poly-l-lysine–
coated Agilent Seahorse 96-well XF cell culture microplate (Agilent, 
Santa Clara, CA) or fibronectin-coated 200 mesh gold R2/2 London 
finder QUANTIFOIL grids at an initial cell density of 25,000 cells 
per well or grid. Cells were then grown for 48 hours under standard 
culture conditions in serum-supplemented RPMI 1640 medium 
(see above). The metabolic profiles, including determination of the 
OCR, of adherent cells either grown in the culture microplate or 
grown directly on the EM grids were subsequently determined using 
the Agilent XF96 Extracellular Flux Analyzer (Agilent). Cells under 
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both conditions were placed into XF medium (RPMI 1640 medium 
containing 10 mM glucose, 4 mM l-glutamine, and 2 mM sodium 
pyruvate) to accurately measure OCR throughout a mitochondrial 
stress test as described previously (90). Briefly, the stress test 
consisted of initial baseline measurements, followed by sequential 
addition of oligomycin (5 Μ), FCCP (10 Μ), and rotenone (5 Μ). 
To control for potential cell number variability between samples, all 
values were normalized to initial baseline OCR.

ER stress assays
ER stress induction
ER stress induction was described previously (91, 92). INS-1 cells, 
the parental cell line for INS-1E cells (gift of C. Wollheim, Université 
de Genève), were treated with either 1 M thapsigargin (1 and 
6 hours) or tunicamycin (2 g/ml; 16 hours) to induce ER stress. At 
the indicated time points, cells were washed in PBS and lysed in ice-
cold lysis buffer [1% Triton X-100, 20 mM Hepes, 100 mM KCl, 
2 mM EDTA, 1 mM phenylmethylsulfonyl fluoride (PMSF), 
leupeptin (10 g/ml), and aprotinin 10 g/ml (pH 7.4)]. For ex-
periments investigating protein phosphorylation, lysis buffer also 
contained phosphatase inhibitors (10 mM NaF, 2 mM Na3VO4, 
and 10 nM okadaic acid). The cells were lysed on ice for 30 min and 
centrifuged at 13,000 rpm (10 min at 4°C). The supernatant was then 
transferred to a new tube, and the protein concentration was deter-
mined with BCA reagent (Pierce Chemical Co., Rockford, IL).
Western blot analysis
Cell lysis and Western blot analysis were performed as described 
previously (92). Briefly, equal amounts of protein (20 g) were run 
on SDS–polyacrylamide gel electrophoresis gels, transferred to 
nitrocellulose membranes, and immunoblotted with the following 
antibodies: p-eIF2 (1:500; #9721, Cell Signaling Technology, Danvers, 
MA), p-PERK (1:500; #3191, Cell Signaling), and growth arrest 
and DNA damage–inducible protein (GADD153)/CHOP (1:500; 
sc-575, Santa Cruz Biotechnology, Dallas, TX). Following incubation 
with secondary antibody conjugated to horseradish peroxidase, 
the respective bands were detected by enhanced chemiluminesence 
(RPN2106, Amersham Biosciences, Piscataway, NJ). Immunoblots 
were scanned via Scion Image software.
XBP1 splicing assay
The assay including primers and PCR conditions were described 
earlier (91). Briefly, total RNA was isolated using TRIzol Reagent 
(Invitrogen) from control untreated cells or cells treated with pharma-
cological inducers of ER stress, followed by purification with RNeasy 
Mini Kit (QIAGEN, Germantown, MD). Rat XBP-1 cDNA was ampli-
fied by RT-PCR (QIAGEN OneStep RT-PCR kit) using primers flanking 
the intron excised by IRE1 exonuclease.

Statistical analyses
Statistical significance was determined using SPSS (version 18.0, 
IBM, Armonk, NY) and GraphPad Prism (version 5.0, GraphPad 
Software Inc., La Jolla, CA). Analyses included one-way analysis 
of variance (ANOVA) ( = 0.05) with a post hoc two-sided Dunnett 
t test for pairwise comparisons. No data were excluded from 
analyses.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/14/eaay9572/DC1

View/request a protocol for this paper from Bio-protocol.
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