15 research outputs found

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Moho depth determination beneath the Zagros Mountains from 3D inversion of gravity data

    No full text
    Due to its geological and economic importance, the Zagros Mountains have been investigated by many researchers during the last decades. Nevertheless, in spite of all the studies conducted on the region, there are still some controversial problems concerning the structure of the Zagros Mountains, including crustal depths, demanding more insights into understanding the crustal constraints of the region. Accordingly, we have conducted a gravity study to determine Moho depth map of the Zagros Mountains region, including its major structural domains from the coastal plain of the Persian Gulf to central Iran. The employed data are the densest and most accurate terrestrial gravity data set observed until now with the precision of 5 μGal and resolution of 5 arc-minute by 5 arc-minute. To image Moho depth variations, gravity inversion software GROWTH2.0 is used, proposing the possibility to model stratified structures by means of a semi-objective exploratory 3D inversion approach. The obtained results reveal the crustal thickness of ~ 30–35 km underneath the southwestern most Zagros Fold-Thrust Belt increasing northeastward to 48 km. The maximum Moho depth is estimated ~ 62 km below the Zagros Mountains belt along the Main Zagros Thrust. Northeast of the study area, an average crustal thickness of 46 km is computed beneath Urumieh–Dokhtar magmatic arc and central Iran.The University of Tehran is acknowledged for the financial support of the first author’s sabbatical leave at AE Consejo Superior de Investigaciones Científicas, CSIC, during the period from March 2016 to August 2016. Research by JF and AGC has been supported by the Spanish Ministry of Economy and Competitiveness research project ESP2013-47780-557 C2-1-R.Peer reviewe
    corecore