39 research outputs found

    Investigating the relationship between DNA methylation age acceleration and risk factors for Alzheimer’s disease

    Get PDF
    This work was supported by a Alzheimer's Research UK Major Project grant (ARUK-PG2017B-10). Generation Scotland received core funding from the Chief Scientist Office of the Scottish Government Health Directorates (CZD/16/6) and the Scottish Funding Council (HR03006). We are grateful to all the families who took part, the general practitioners and the Scottish School of Primary Care for their help in recruiting them, and the whole Generation Scotland team that includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, health-care assistants and nurses. Genotyping of the GS:SFHS samples was carried out by the Genetics Core Laboratory at the Wellcome Trust Clinical Research Facility, Edinburgh, Scotland, and was funded by the Medical Research Council UK and the Wellcome Trust (Wellcome Trust Strategic Award “STratifying Resilience and Depression Longitudinally” [STRADL];104036/Z/14/Z). DNA methylation data collection was funded by the Wellcome Trust Strategic Award (10436/Z/14/Z). The research was conducted in the University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology (CCACE), part of the cross-council Lifelong Health and Wellbeing Initiative (MR/K026992/1); funding from the Biotechnology and Biological Sciences Research Council (BBSRC) and Medical Research Council (MRC) is gratefully acknowledged. CCACE supports I.J.D. with some additional support from the Dementias Platform UK (MR/L015382/1). A.M.M. and H.C.W. have received support from the Sackler Institute.Peer reviewedPublisher PD

    Down-regulation of mechanisms involved in cell transport and maintenance of mucosal integrity in pigs infected with Lawsonia intracellularis

    Get PDF
    Lawsonia intracellularis is an obligate intracellular bacterium, responsible for the disease complex known as proliferative enteropathy (PE). L. intracellularis is associated with intestinal crypt epithelial cell proliferation but the mechanisms responsible are yet to be defined. Microarray analysis was used to investigate the host-pathogen interaction in experimentally infected pigs to identify pathways that may be involved. Ileal samples originating from twenty-eight weaner pigs experimentally challenged with a pure culture of L. intracellularis (strain LR189/5/83) were subjected to microarray analysis. Microarray transcriptional signatures were validated using immunohistochemistry and quantitative real time PCR of selected genes at various time points post challenge. At peak of infection (14 days post challenge) 86% of altered transcripts were down regulated, particularly those involved in maintenance of mucosal integrity and regulation of cell transport. Among the up-regulated transcripts, CD163 and CDK1 were novel findings and considered to be important, due to their respective roles in innate immunity and cellular proliferation. Overall, targeted cellular mechanisms included those that are important in epithelial restitution, migration and protection; maintenance of stable inter-epithelial cell relationships; cell transport of nutrients and electrolytes; innate immunity; and cell cycle

    Complete Genome Sequence of a Pathogenic Genotype 1 Subtype 3 Porcine Reproductive and Respiratory Syndrome Virus (Strain SU1-Bel) from Pig Primary Tissue

    Get PDF
    We report here the complete genome of the pathogenic eastern European subtype 3 porcine reproductive and respiratory syndrome virus (PRRSV) strain SU1-Bel, sequenced directly from a pig lymph node. While sharing substantial sequence similarity with other subtype 3 strains, SU1-Bel is found to harbor unique indels and contain putative novel subgenomic RNAs

    Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar)

    Get PDF
    BackgroundDense single nucleotide polymorphism (SNP) genotyping arrays provide extensive information on polymorphic variation across the genome of species of interest. Such information can be used in studies of the genetic architecture of quantitative traits and to improve the accuracy of selection in breeding programs. In Atlantic salmon (Salmo salar), these goals are currently hampered by the lack of a high-density SNP genotyping platform. Therefore, the aim of the study was to develop and test a dense Atlantic salmon SNP array. ResultsSNP discovery was performed using extensive deep sequencing of Reduced Representation (RR-Seq), Restriction site-Associated DNA (RAD-Seq) and mRNA (RNA-Seq) libraries derived from farmed and wild Atlantic salmon samples (n = 283) resulting in the discovery of > 400 K putative SNPs. An Affymetrix Axiom® myDesign Custom Array was created and tested on samples of animals of wild and farmed origin (n = 96) revealing a total of 132,033 polymorphic SNPs with high call rate, good cluster separation on the array and stable Mendelian inheritance in our sample. At least 38% of these SNPs are from transcribed genomic regions and therefore more likely to include functional variants. Linkage analysis utilising the lack of male recombination in salmonids allowed the mapping of 40,214 SNPs distributed across all 29 pairs of chromosomes, highlighting the extensive genome-wide coverage of the SNPs. An identity-by-state clustering analysis revealed that the array can clearly distinguish between fish of different origins, within and between farmed and wild populations. Finally, Y-chromosome-specific probes included on the array provide an accurate molecular genetic test for sex. ConclusionsThis manuscript describes the first high-density SNP genotyping array for Atlantic salmon. This array will be publicly available and is likely to be used as a platform for high-resolution genetics research into traits of evolutionary and economic importance in salmonids and in aquaculture breeding programs via genomic selection

    Genomic variation in macrophage-cultured European porcine reproductive and respiratory syndrome virus Olot/91 revealed using ultra-deep next generation sequencing

    Get PDF
    BACKGROUND: Porcine Reproductive and Respiratory Syndrome (PRRS) is a disease of major economic impact worldwide. The etiologic agent of this disease is the PRRS virus (PRRSV). Increasing evidence suggest that microevolution within a coexisting quasispecies population can give rise to high sequence heterogeneity in PRRSV. FINDINGS: We developed a pipeline based on the ultra-deep next generation sequencing approach to first construct the complete genome of a European PRRSV, strain Olot/9, cultured on macrophages and then capture the rare variants representative of the mixed quasispecies population. Olot/91 differs from the reference Lelystad strain by about 5% and a total of 88 variants, with frequencies as low as 1%, were detected in the mixed population. These variants included 16 non-synonymous variants concentrated in the genes encoding structural and nonstructural proteins; including Glycoprotein 2a and 5. CONCLUSION: Using an ultra-deep sequencing methodology, the complete genome of Olot/91 was constructed without any prior knowledge of the sequence. Rare variants that constitute minor fractions of the heterogeneous PRRSV population could successfully be detected to allow further exploration of microevolutionary events

    CATALISE: A multinational and multidisciplinary Delphi consensus study. Identifying language impairments in children

    Get PDF
    © 2016 Bishop et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Delayed or impaired language development is a common developmental concern, yet there is little agreement about the criteria used to identify and classify language impairments in children. Children\u27s language difficulties are at the interface between education, medicine and the allied professions, who may all adopt different approaches to conceptualising them. Our goal in this study was to use an online Delphi technique to see whether it was possible to achieve consensus among professionals on appropriate criteria for identifying children who might benefit from specialist services. We recruited a panel of 59 experts representing ten disciplines (including education, psychology, speech-language therapy/pathology, paediatrics and child psychiatry) from English-speaking countries (Australia, Canada, Ireland, New Zealand, United Kingdom and USA). The starting point for round 1 was a set of 46 statements based on articles and commentaries in a special issue of a journal focusing on this topic. Panel members rated each statement for both relevance and validity on a sevenpoint scale, and added free text comments. These responses were synthesised by the first two authors, who then removed, combined or modified items with a view to improving consensus. The resulting set of statements was returned to the panel for a second evaluation (round 2). Consensus (percentage reporting \u27agree\u27 or \u27strongly agree\u27) was at least 80 percent for 24 of 27 round 2 statements, though many respondents qualified their response with written comments. These were again synthesised by the first two authors. The resulting consensus statement is reported here, with additional summary of relevant evidence, and a concluding commentary on residual disagreements and gaps in the evidence base

    Lawsonia intracellularis infection of intestinal crypt cells is associated with specific depletion of secreted MUC2 in goblet cells

    Get PDF
    AbstractThe expression patterns of secreted (MUC2 and MUC5AC) and membrane-tethered (MUC1, MUC4, MUC12 and MUC13) mucins were monitored in healthy pigs and pigs challenged orally with Lawsonia intracellularis. These results showed that the regulation of mucin gene expression is distinctive along the GI tract of the healthy pig, and may reflect an association between the function of the mucin subtypes and different physiological demands at various sites. We identified a specific depletion of secreted MUC2 from goblet cells in infected pigs that correlated with the increased level of intracellular bacteria in crypt cells. We concluded that L. intracellularis may influence MUC2 production, thereby altering the mucus barrier and enabling cellular invasion

    Analysis of the genetic diversity and mRNA expression level in porcine reproductive and respiratory syndrome virus vaccinated pigs that developed short or long viremias after challenge

    Get PDF
    Porcine reproductive and respiratory syndrome virus (PRRSv) infection alters the host's cellular and humoral immune response. Immunity against PRRSv is multigenic and vary between individuals. The aim of the present study was to compare several genes that encode for molecules involved in the immune response between two groups of vaccinated pigs that experienced short or long viremic periods after PRRSv challenge. These analyses include the sequencing of four SLA Class I, two Class II allele groups, and CD163, plus the analysis by quantitative realtime qRT-PCR of the constitutive expression of TLR2, TLR3, TLR4, TLR7, TLR8 and TLR9 mRNA and other molecules in peripheral blood mononuclear cells

    An animal model to evaluate the function and regulation of the adaptively evolving stress protein SEP53 in oesophageal bile damage responses

    Get PDF
    Squamous epithelium in mammals has evolved an atypical stress response involving down-regulation of the classic HSP70 protein and induction of sets of proteins including one named SEP53. This atypical stress response might be due to the unusual environmental pressures placed on squamous tissue. In fact, SEP53 plays a role as an anti-apoptotic factor in response to DNA damage induced by deoxycholic acid stresses implicated in oesophageal reflux disease. SEP53 also has a genetic signature characteristic of an adaptively and rapidly evolving gene, and this observation has been used to imply a role for SEP53 in immunity. Physiological models of squamous tissue are required to further define the regulation and function of SEP53. We examined whether porcine squamous epithelium would be a good model to study SEP53, since this animal suffers from a bile-reflux disease in squamous oesophageal tissue. We have (1) cloned and sequenced the porcine SEP53 locus from porcine bacterial artificial chromosome genomic DNA, (2) confirmed the strikingly divergent nature of the C-terminal portion of the SEP53 gene amongst mammals, (3) discovered that a function of the conserved N-terminal domain of the gene is to maintain cytoplasmic localisation, and (4) examined SEP53 expression in normal and diseased porcine pars oesophagea. SEP53 expression in porcine tissue was relatively confined to gastric squamous epithelium, consistent with its expression in normal human squamous epithelium. Immunohistochemical staining for SEP53 protein in normal and damaged pars oesophagea demonstrated significant stabilisation of SEP53 protein in the injured tissue. These results suggest that porcine squamous epithelium would be a robust physiological model to examine the evolution and function of the SEP53 stress pathway in modulating stress-induced responses in squamous tissue
    corecore