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Abstract Introduction: The “epigenetic clock” is a DNAmethylation–based estimate of biological age and is
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correlated with chronological age—the greatest risk factor for Alzheimer’s disease (AD). Genetic and
environmental risk factors exist for AD, several of which are potentially modifiable. In this study, we
assess the relationship between the epigenetic clock and AD risk factors.
Methods: Multilevel models were used to assess the relationship between age acceleration (the re-
sidual of biological age regressed onto chronological age) and AD risk factors relating to cognitive
reserve, lifestyle, disease, and genetics in the Generation Scotland study (n 5 5100).
Results: We report significant associations between the epigenetic clock and body mass index, total
cholesterol to high-density lipoprotein cholesterol ratios, socioeconomic status, high blood pressure,
and smoking behavior (Bonferroni-adjusted P , .05).
Discussion: Associations are present between environmental risk factors for AD and age accelera-
tion. Measures to modify such risk factors might improve the risk profile for AD and the rate of bio-
logical ageing. Future longitudinal analyses are therefore warranted.
� 2018 Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an open access
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
94

95
Keywords: DNA methylation; Epigenetic clock; Alzheimer’s disease
96

97
98

99

100

101

102

103

104

105

106

107

108
1. Introduction

DNA methylation is an epigenetic modification typically
characterized by the addition of a methyl group to a
cytosine-guanine dinucleotide. Both genetic and environ-
mental factors influence DNA methylation, which in turn
can regulate gene expression [1]. The “epigenetic clock” is
an estimation of biological age derived from DNA methyl-
ation data and is strongly correlated with chronological
declared that no conflict of interest exists.
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109
age [2]. From biological age, a measure of age acceleration
can be obtained based on the difference between an individ-
ual’s biological (estimated) and chronological (actual) age.
Age acceleration has been linked to a range of age-related
health outcomes, including increased Alzheimer’s disease
(AD) pathology [3], reduced cognitive and physical fitness
[4], and an increase in all-cause mortality [5]. The epigenetic
clock has therefore been proposed as a biomarker of ageing
and may be predictive of age-related disorders, such as de-
mentia [6].

Dementia is one of the leading global health concerns of
the 21st century. The most common form of dementia is
AD. Lifestyle factors such as smoking have been linked
to an increased risk of AD [7], as have disease-related
sociation. This is an open access article under the CC BY license (http://
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factors including type 2 diabetes (T2D) and high blood
pressure (HBP) [8,9]. Moreover, resilience to age-related
brain changes (e.g., cognitive reserve) has been linked to
AD risk [10]. Factors such as educational attainment and
socioeconomic status have been proposed as proxy mea-
sures of cognitive reserve, and lower levels of these are es-
tablished AD risk factors [11,12]. Genetic studies of AD
have revealed several risk factors [13], with the APOE lo-
cus (encoding apolipoprotein E) being among the strongest
[14].

A recent review [15] suggested that up to a third of
cases of all-cause dementia might be delayed by actively
addressing its modifiable risk factors. The present study
aims to investigate the relationship between epigenetic
age acceleration and both genetic and potentially modifi-
able environmental AD risk factors. Two measures of age
acceleration were assessed in over 5000 individuals from
the Generation Scotland cohort, intrinsic epigenetic age ac-
celeration (IEAA) and extrinsic epigenetic age acceleration
(EEAA). These measures are described in greater detail in
the methods section. Briefly, IEAA is a measure of age ac-
celeration that is independent of age-related changes in the
cellular composition of blood [16], whereas EEAA
captures the age-related functional decline of the immune
system. Age is the strongest risk factor for AD [17], and
epigenetic age is a robust predictor of chronological age.
We therefore hypothesize that individuals with poorer
profiles for AD risk factors display accelerated ageing in
comparison to those with more favorable profiles.
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2. Methods

2.1. The Generation Scotland cohort

Details of the Generation Scotland: Scottish Family
Health Study (GS:SFHS) have been described previously
[18,19]. Briefly, the cohort comprises 23,960 individuals,
each with at least one family member participating in the
study. DNA samples were collected for genotype and
DNA methylation profiling along with detailed clinical,
lifestyle, and sociodemographic data. The present study
comprised 5200 individuals from the cohort for whom
DNA methylation data were available. A summary of
all variables assessed in this analysis is presented in
Table 1.
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2.2. Ethics

All components of GS:SFHS received ethical approval
from the NHS Tayside Committee on Medical Research
Ethics (REC reference number: 05/S1401/89). GS:SFHS
has also been granted research tissue bank status by the
NHS Tayside Committee on Medical Research Ethics
(REC reference number: 10/S1402/20), providing generic
ethical approval for a wide range of uses within medical
research.
FLA 5.5.0 DTD � DADM255_proof
2.3. GS:SHFS DNA methylation

Genome-wide DNA methylation was profiled in blood
samples from 5200 individuals using the Illumina Human-
MethylationEPIC BeadChips. Quality control was conduct-
ed using R [20]. ShinyMethyl [21] was used to plot the log
median intensity of methylated versus unmethylated signal
per array with outliers being excluded upon visual inspec-
tion. The software package WateRmelon [22] was used to
remove (1) samples in which �1% of cytosine-guanine di-
nucleotides had a detection P value in excess of .05; (2)
probes with a beadcount of less than 3 in more than 5 sam-
ples; and (3) probes in which �0.5% of samples had a
detection P value in excess of .05. ShinyMethyl was used
to exclude samples in which predicted sex did not match
recorded sex. This left a sample of 5101 available for anal-
ysis.

2.4. Calculation of age acceleration

Methylation-based estimates of age were calculated using
the online age calculator (https://dnamage.genetics.ucla.edu/)
developed by Horvath [23]. Normalized GS:SHFS DNA
methylation data were used as input for the algorithm, and
data underwent a further round of normalization by the age
calculator. Twomeasures of age acceleration were calculated,
IEAA and EEAA. IEAA is defined as the residual term of a
multivariate model regressing estimated Horvath methylation
age [23] on chronological age, fitting counts of naive CD81
T-cells, exhausted CD81 T-cells, plasmablasts, CD41
T-cells, natural killer cells, monocytes, and granulocytes esti-
mated from the methylation data. IEAA therefore does not
consider age-related changes in the cellular composition of
blood. Horvath’s measure of methylation age is also consis-
tent across multiple tissue types, including brain [23].
Conversely, the estimate of EEAA tracks age-related changes
in blood cell composition as well as intrinsic epigenetic
changes. EEAA is calculated first by calculating a weighted
average of Hannum’s DNA methylation age [24] and three
cell types whose abundance is known to change with age
(naive cytotoxic T-cells, exhausted cytotoxic T-cells, and
plasmablasts) using the approach described by Klemera and
Doubal [25]. EEAA is defined as the residual term of a univar-
iate model regressing the weighted estimated age on chrono-
logical age. EEAA correlates with age-related changes in the
cellular composition of blood, thereby capturing a degree of
immunosenescence.

2.5. Definition of AD risk factors

AD risk factors were divided into four categories: (1)
cognitive reserve, (2) disease, (3) lifestyle, and (4) genetics.
Cognitive reserve factors comprised education years and so-
cioeconomic status as measured by the Scottish Index of
Multiple Deprivation (SIMD). Education was measured as
an ordinal variable—0: 0 years; 1: 1–4 years; 2: 5–9 years;
3: 10–11 years; 4: 12–13 years; 5: 14–15 years; 6:
� 20 June 2018 � 2:45 pm � ce
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Table 1

Summary of variables assessed in the Generation Scotland cohort

Variable N Mean SD

Chronological age (years) 5100 48.51 13.99

Horvath’s estimated age (years) 5100 52.60 11.59

Hannum’s estimated age (years) 5100 39.42 11.68

Body mass index (BMI; kg/m2) 4977 27.03 5.37

Smoking (pack years)* 4997 9.13 17.28

High-density lipoprotein (HDL) cholesterol (mmol/L) 4948 1.49 0.42

Total cholesterol (mmol/L) 4960 5.13 1.09

Total:HDL cholesterol (ratio) 4948 3.67 1.22

N Mean IQR

Socioeconomic status (SIMD, rank) 4728 4230 2148.5–5423

Educationy 4816 4 3–6

AD polygenic risk score 4994 1.7 ! 1024 1.6 ! 1024 to 1.9 ! 1024

Sex (male/female) 1918/3083 - -

Type 2 diabetes (yes/no) 171/4830 - -

High blood pressure (yes/no) 768/4830 - -

AD family history (yes/no) 834/4167 - -

APOE (ε2ε2) 27 - -

APOE (ε2ε3) 572 - -

APOE (ε2ε4) 108 - -

APOE (ε3ε3) 2952 - -

APOE (ε3ε4) 1126 - -

APOE (ε4ε4) 124 - -

Abbreviations: AD, Alzheimer’s disease; BMI, body mass index; SIMD, Scottish Index of Multiple Deprivation Q10.

*The following smoking categories were available: current smoker (N 5 939); former smoker, stopped within past 12 months (N 5 158); former smoker,

stopped more than 12 months ago (N 5 1309); never smoker (N 5 2533). Data were unavailable for 62 participants.
yEducation was measured as an ordinal variable—0: 0 years; 1: 1–4 years; 2: 5–9 years; 3: 10–11 years; 4: 12–13 years; 5: 14–15 years; 6: 16–17 years; 7: 18–

19 years; 8: 20–21 years; 9: 22–23 years; and 10: �24 years.
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16–17 years; 7: 18–19 years; 8: 20–21 years; 9: 22–23 years;
and 10:�24 years. The SIMD is comprised of ranks for data
zones throughout Scotland from 1 (most deprived) to 6505
(least deprived). For each data zone, ranks are calculated
based on income, employment, health, education, skills
and training, housing, geographic access, and crime.
Disease-related factors comprised self-reported type 2 dia-
betes status and HBP status. Lifestyle factors comprised
smoking pack years (defined as packs smoked per day times
years as a smoker), body mass index (BMI), high-density li-
poprotein (HDL), total cholesterol, and total:HDL choles-
terol ratio. Genetic factors comprised family history
(defined as having a parent or grandparent with AD), AD
polygenic risk score (PGRS), and APOE ε4 carrier status.
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2.6. Calculation of AD PGRS

PGRS for AD was created for all individuals with geno-
type data in the GS:SHFS cohort. All autosomal SNPs which
passed quality control were included in the calculation of the
PGRS for AD (see Supplementary Information for quality
control parameters). PGRS for ADwas estimated using sum-
mary statistics from an independent GWAS of AD (17,008
cases; 37,154 controls) conducted by the International Ge-
nomics of Alzheimer’s Project [13]. PGRSwas estimated us-
ing the PRSice software package, according to previously
described protocols [26], with LD threshold and distance
FLA 5.5.0 DTD � DADM255_proof
threshold for clumping of R2 . 0.25 and 250 kb, respec-
tively. After excluding SNPs within a 500-kb region of
APOE, a score was created for each individual, using all
possible remaining SNPs, in accordance with previous
GS:SFHS analyses [27].

2.7. Statistical analysis

Multilevel models were built in R [20], assessing the rela-
tionship between epigenetic age acceleration (IEAA and
EEAA) and factors related to cognitive reserve, disease, life-
style, and genetics. In each model, the AD risk factor was
fitted as the outcome; chronological age, sex, and age accel-
eration were fitted as fixed effects; and pedigree information
was fitted as a random effect to control for genetic related-
ness within the cohort. Models were built using the
MCMCglmm() function from the MCMCglmm R package
[28]. Correction for multiple testing was applied separately
to IEAA- and EEAA-based analyses using the Bonferroni
method. Numeric variables were scaled to have zero mean
and unit variance.
3. Results

3.1. Estimation of epigenetic age

Methylation data from 5101 individuals were submitted
to the online age calculator. One individual was flagged
� 20 June 2018 � 2:45 pm � ce
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for an ambiguous gender prediction and was omitted from
downstream analysis, leaving 5100 individuals. A summary
of chronological and estimated ages in the GS:SHFS cohort
is provided in Table 1. Both Horvath’s and Hannum’s esti-
mates of biological age were strongly correlated with chro-
nological age (r 5 0.94 and 0.93, respectively). As reported
previously [29], there was a strong effect of biological sex on
age acceleration, with men showing greater acceleration
than women (mean EEAA: males 5 0.47 and
females 5 20.3, P 5 3.58 ! 10212; Mean IEAA:
males 5 1.13 and females 5 20.71, P 5 8.68 ! 10253).

3.2. Cognitive reserve and epigenetic age acceleration

Two cognitive reserve factors were evaluated for associ-
ation with age acceleration, socioeconomic status based on
the SIMD and education years (Table 2; Fig. 1). No signifi-
cant associations were present between these factors and
IEAA. Nominally significant negative associations (at
P , .05) were observed between EEAA and both education
and SIMD (0.076 SD decrease in EEAA per SD increase in
education years, P 5 .048; 0.05 SD decrease in EEAA per
SD increase in SIMD, P , .001).

3.3. Disease-related risk factors and epigenetic age
acceleration

We assessed the relationship between age acceleration
and two disease-related risk factors such as T2D and HBP
(Table 2; Fig. 1). No significant associations were observed
Table 2

Age acceleration and AD risk factors

IEAA

b 95% CI

Cognitive reserve

Socioeconomic status (SIMD, SD) 20.005 20.034 to 0.

Education* (per unit) 0.0398 20.0037 to 0

Disease

Type 2 diabetes (yes/no) 0.178 0.00720.338

High blood pressure (yes/no) 0.105 20.016 to 0.

Lifestyle

Body mass index (BMI; kg/m2) 0.089 0.06–0.11

Smokingy (pack years) 0.031 0.004–0.06

High-density lipoprotein (HDL)

cholesterol (mmol/L)

20.028 20.056 to 2

Total cholesterol (mmol/L) 0.036 0.00720.06

Total:HDL cholesterol (ratio) 0.047 0.01920.072

Genetic

AD polygenic risk score (SD) 20.002 20.026 to 0.

AD family history (yes/no) 0.06 20.162 to 0.

APOE (ε4 carrier) 20.107 20.307 to 0.

Abbreviations: AD, Alzheimer’s disease; BMI, body mass index; IEAA, intrins

SIMD, Scottish Index of Multiple Deprivation.

NOTE. Significant associations after accounting for multiple comparisons are h

*Education was measured as an ordinal variable—0: 0 years; 1: 1–4 years; 2: 5–9

19 years, 8: 20–21 years; 9: 22–23 years; and 10: �24 years.
yThe following smoking categories were available: current smoker (N 5 939);

stopped more than 12 months ago (N 5 1309); never smoker (N 5 2533), and no

FLA 5.5.0 DTD � DADM255_proof
between either measure of epigenetic age acceleration and
T2D. There was a significant relationship between extrinsic
age acceleration and HBP (P 5 .002; 0.177 SD increase in
EEAA for individuals with HBP).
3.4. Lifestyle-related risk factors and epigenetic age
acceleration

Four factors related to lifestyle were considered: (1) BMI,
(2) smoking habits (pack years), (3) HDL, and (4) total
cholesterol (Table 2; Fig. 1). Higher values of both measures
of epigenetic age acceleration were observed with higher
BMI (IEAA: 0.089 SD increase per SD increase in BMI,
P , .001; EEAA: 0.061 SD increase per SD increase of
BMI, P , .001) and more pack years (IEAA: 0.031 SD in-
crease per SD increase in smoking pack years, P 5 .028;
EEAA: 0.059 SD increase per SD increase in smoking
pack years, P , .001). Greater IEAA was associated with
lower levels of HDL cholesterol (0.028 SD decrease in
IEAA per SD increase of mmol/L HDL, P 5 .032) and
higher levels of total cholesterol (0.036 SD increase in
IEAA per SD increase of mmol/L total cholesterol,
P5 .004). A significant positive association was present be-
tween IEAA and total:HDL cholesterol ratios (0.047 SD in-
crease in IEAA per SD increase in ratio of total:HDL
cholesterol, P , .001). There were no significant associa-
tions observed between EEAA and any of the three
cholesterol-related metrics assessed.
Q11

EEAA

P b 95% CI P

022 .71 20.05 20.083 to 20.026 ,.001

.084 .09 20.076 0.039 .048

.06 0.142 20.024 to 0.294 .08

21 .078 0.177 0.064–0.29 .002

,.001 0.061 0.03–0.087 ,.001

.028 0.059 0.032520.086 ,.001

0.0053 .032 20.02 20.047 to 0.005 .098

.004 20.027 20.056 to 20.002 .056

,.001 0.014 20.015 to 0.039 .33

022 .896 20.007 20.03 to 0.02 .6

279 .614 20.007 20.21 to 0.19 .94

119 .308 20.103 20.306 to 0.1 .3

ic epigenetic age acceleration; EEAA, extrinsic epigenetic age acceleration;
Q12

ighlighted in bold (P , .004).

years; 3: 10–11 years; 4: 12–13 years; 5: 14–15 years; 6: 16–17 years; 7: 18–

former smoker, stopped within past 12 months (N 5 158); former smoker,

t coded (N 5 62).
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Fig. 1. Effects of AD risk factors on age acceleration. Plots are separated into four groups of AD risk factors: cognitive reserve, disease, lifestyle, and genetic.

Standardized Q9model b coefficients (i.e., effect sizes) are presented along the y-axes, whereas risk factors are presented along the x-axes. Points are colored by

EEAA (red) and IEAA (blue). Error bars show the 95% CI. Points accompanied by an asterisk (*) represent measures significantly associated with age accel-

eration at a Bonferroni P, .05. Abbreviations: EEAA, extrinsic epigenetic age acceleration; IEAA, intrinsic epigenetic age acceleration; SIMD, Scottish Index

of Multiple Deprivation; 95% CI, 95% confidence interval; HBP, high blood pressure; T2D, type 2 diabetes; BMI, body mass index; HDL, high-density lipo-

protein cholesterol; AD, Alzheimer’s disease; PGRS, polygenic risk score. Effect sizes represent SD increase/decrease in epigenetic age per 1 SD increase/

decrease in risk factor (disease positive for HBP and T2D, positive APOE ε4 carrier status, and positive family history of AD).

D.L. McCartney et al. / Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring - (2018) 1-9 5

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629
3.5. Genetic risk factors and epigenetic age acceleration

Three genetic risk factors for AD were assessed for asso-
ciation with age acceleration: (1) family history, (2) AD
PGRS, and (3) APOE ε4 carrier status (Table 2; Fig. 1).
No significant associations were present between any of
the genetic risk factors assessed and either measure of epige-
netic age acceleration.
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3.6. Correction for multiple testing

Applying a Bonferroni correction separately for the
IEAA and EEAA regressions (P , (0.05/12) 5 .0042)
identified significant IEAA associations with BMI and to-
tal:HDL cholesterol ratio (BMI adjusted P , 0.001; to-
tal:HDL cholesterol ratio adjusted P , .001) and
significant EEAA associations with SIMD, BMI, HBP
status, and smoking (SIMD adjusted P , .001; BMI
adjusted P , .001; HBP adjusted P 5 .002; and smoking
adjusted P , .001). Of these, increased age acceleration
was associated with increased total:HDL cholesterol ra-
FLA 5.5.0 DTD � DADM255_proof
tios, BMI, smoking levels, social deprivation, and HBP
status.
4. Discussion

In the present study, we hypothesized that age accelera-
tion might be associated with AD risk factors in the Gener-
ation Scotland cohort. Using both intrinsic (cell-adjusted)
and extrinsic (immune system–associated) estimates of
epigenetic age acceleration in a cohort of 5100 individuals,
we identified significant associations between multiple AD
risk factors and age acceleration. Several of the AD risk fac-
tors associated with age acceleration are potentially modifi-
able lifestyle factors, suggesting the rate of epigenetic
ageing can be altered through behavioral changes.

Biological age has been linked to an increased risk of all-
cause mortality and is strongly correlated with chronological
age [5]. The epigenetic clock has been proposed as a
biomarker of ageing as well as a predictor of an individual’s
health and susceptibility to age-related health outcomes
[3,5]. As chronological age increases, so does the risk of
� 20 June 2018 � 2:45 pm � ce
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dementia. Individuals with greater age acceleration (i.e.,
with greater epigenetic age relative to chronological age)
have slightly poorer cognitive ability [4] and a modest in-
crease in burden of pathological hallmarks of dementia [3].

Of the risk factors assessed, BMI and smoking levels
were associated (at a nominal significance threshold) with
both estimates of age acceleration. BMI has previously
been associated with an increased risk of dementia and
AD when it is high in middle age and low in old age
[30,31]. Consistent with our findings, others have observed
an association between higher BMI and increased age
acceleration using both Hannum- and Horvath-based algo-
rithms [23,24,32]. Previous studies have failed to find
associations between smoking levels and epigenetic age
acceleration [16,33]. Our findings of a significant positive
association between self-reported smoking and both mea-
sures of age acceleration may be attributable to our larger
sample size (N 5 4997 individuals compared with
maximum N5 978 individuals with smoking data available
[33]), although only EEAAwas significantly associated with
smoking after correction for multiple testing.

In the present study, factors relating to cholesterol were
associated with age acceleration based on the intrinsic
(cell-adjusted) estimate of epigenetic age acceleration.
HDL levels were negatively correlated with epigenetic
age acceleration, whereas both total cholesterol levels
and total:HDL cholesterol ratio were positively correlated
with age acceleration. To our knowledge, significant asso-
ciations between methylation-based estimates of age accel-
eration and total:HDL cholesterol ratios have not been
reported to date. Consistent with our findings, others
have observed an association between lower HDL choles-
terol and increased age acceleration [32]. A relationship
between increased age acceleration and both total and
HDL cholesterol levels using a transcriptomic estimate of
biological age has also been reported [34]. HDL choles-
terol, colloquially known as “good cholesterol,” primarily
functions in lipid transport. Higher levels of HDL choles-
terol have been linked to a reduction in cardiovascular dis-
ease [35] as well as a decreased risk of AD and dementia
[36,37]. Conflicting evidence exists for the association
between mid-life levels of total cholesterol and dementia
risk [38,39]. However, studies have consistently reported
an inverse association between total cholesterol levels
and AD risk in elderly individuals [40–42]. Longitudinal
analyses have revealed different trajectories of BMI in
dementia cases compared with controls [31]. Similarly,
longitudinal analyses have also indicated that mid- to
late-life trajectories of cholesterol levels are related to
both APOE genotype [43] and dementia status [44].
APOE, a strong genetic risk factor for AD, also functions
in lipid transport. The association between cholesterol
levels and AD risk, coupled with the functions of APOE
and other genetic risk factors (e.g., SORL1) [13], supports
FLA 5.5.0 DTD � DADM255_proof
the role of lipid metabolism and transport in dementia
[45,46].

For the proxy measures of cognitive reserve, both educa-
tional attainment and socioeconomic status were associated
with EEAA. However, of the two, only socioeconomic status
remained significant after Bonferroni correction. Those with
fewer education years showed increased age acceleration, as
did individuals from more deprived socioeconomic back-
grounds. Individuals with increased levels of education
have displayed delays in the age of onset of dementia [47].
Lower levels of education are also associated with an
increased risk of transitioning from a cognitively normal to
a cognitively impaired state [48]. Consistent with our find-
ings, others have reported a similar pattern between EEAA
and educational attainment [32,49]. Moreover, an inverse
relationship has previously been reported between
socioeconomic status and a measure of age acceleration
also based on the algorithm by Hannum et al. [24,50]. The
manifestation of biological differences linked to social
deprivation is possibly due to the association between
socioeconomic status and other, more biologically direct,
risk factors for dementia. For example, several lifestyle-
related AD risk factors have been shown to be associated
with socioeconomic status, including smoking and BMI
[51,52].

Of the disease-related AD risk factors, there were no as-
sociations between T2D and either measure of age acceler-
ation. However, a significant association was observed
between HBP status and the extrinsic estimate of age accel-
eration. Hypertension is prevalent among older individuals,
and its link with dementia is well established [53]. Consis-
tent with our findings, others have reported an association
between systolic blood pressure and EEAA [32]. It should
be noted, however, that the study cohort was limited to post-
menopausal women.

No significant associations were observed between either
measure of age acceleration and any of the genetic risk fac-
tors assessed. Epigenetic age acceleration effects of environ-
mental factors such as smoking and cholesterol may be more
visible in blood because of direct contact with the tissue.
Although genetic risk factors should be consistent across
all tissues, it is possible that they only influence epigenetic
age acceleration in cell types in which AD pathology is pri-
marily observed (i.e., brain tissue).

After Bonferroni correction, only BMI, cholesterol ratios,
smoking, HBP status, and socioeconomic status were associ-
ated with age acceleration. With the exception of socioeco-
nomic status, all are traits that can directly impact on
cardiometabolic health. This highlights a well-established
overlap between AD risk and that of cardiovascular disease
[54].

With a sample size in excess of 5000 individuals, this is
among the largest single-cohort studies of DNA
methylation–based ageing to date. Recent analyses of
� 20 June 2018 � 2:45 pm � ce

778

779



D.L. McCartney et al. / Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring - (2018) 1-9 7

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911
DNA methylation–based ageing have been undertaken with
sample sizes of a similar scale, comprised of multiple co-
horts [50,55]. An advantage of the present study is that the
cohort is derived from a single population. This minimizes
the likelihood of confounders such as genetic and
phenotypic stratification, which might be observed in
studies comprising multiple populations. Moreover, the
use of a comprehensively genotyped and phenotyped
cohort has permitted the assessment of both genetic and
environmental AD risk factors and their relationship with
epigenetic ageing. This resource is further strengthened by
the potential for data linkage to medical records and
recontact of participants, making future longitudinal
analyses possible. The cross-sectional design of the present
study poses a limitation as it does not permit the assessment
of longitudinal changes in age acceleration in response to
altered lifestyle habits. However, such a study might be
informative in determining whether the trajectory of biolog-
ical age can be modified through efforts to reduce the risk of
AD and other forms of dementia. An additional limitation re-
lates to the absence of AD biomarker data in the Generation
Scotland cohort. Deriving high-quality measurements for
biomarkers such as tau and amyloid-b in live subjects can
be invasive and costly. However, the recent development
of high-performance assays for plasma-based tau and amy-
loid-b may provide a noninvasive, cost-effective alternative
for future analyses [56,57]. With the exception of BMI and
smoking, significant associations were specific to either
IEAA or EEAA. This discordance is possibly due to
differences in the two estimates of age acceleration. As
described in the methods section, IEAA does not reflect dif-
ferences in blood cell composition that may be due to age
while these differences are incorporated into the estimate
of EEAA. HBP and both cognitive reserve factors were
associated with EEAA, but not IEAA. This may reflect a
relationship between these risk factors and immunosenes-
cence. There were no available measurements for
immunosenesence-related markers in the Generation Scot-
land cohort. However, others have reported inverse associa-
tions between socioeconomic factors and interleukin-6 and
C-reactive protein—two markers of immunosenescence
[58,59]. Moreover, several studies have reported an
association between hypertension and elevated levels of
C-reactive protein [60]. In contrast, the cholesterol-related
factors were associated with IEAA but not EEAA, possibly
reflecting a relationship between these factors and “pure”
epigenetic ageing (i.e., tissue-agnostic ageing).

In conclusion, we reported associations between both
intrinsic and extrinsic measures of epigenetic age accelera-
tion and environmental AD risk factors. However, no associ-
ations were present for the genetic risk factors assessed. At a
nominal (P , .05) significance threshold, IEAAwas associ-
ated with all of the lifestyle-related factors assessed, whereas
EEAA was associated with HBP, BMI, smoking, and both
FLA 5.5.0 DTD � DADM255_proof
cognitive reserve factors assessed. After Bonferroni correc-
tion, BMI, cholesterol ratios, smoking, HBP, and socioeco-
nomic status remained significantly associated with
epigenetic age acceleration. These have all been linked to
cardiovascular disease risk, as well as AD risk [15,61].
Risk factors such as cholesterol levels, smoking, blood
pressure, and BMI can be modulated by behavioral
changes with regard to exercise, dietary intake, and
smoking behavior. The epigenetic clock is a robust
predictor of chronological age, and the greatest risk factor
for AD is advanced age [17]. Individuals displaying acceler-
ated ageing have demonstrated increased AD neuropa-
thology and lower cognitive test scores [3,4]. In the
present study, we observed a relationship between age
acceleration and AD risk factors. It is reasonable to
suggest that by improving one’s AD risk profile where
possible, the biological ageing process could be “slowed.”
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RESEARCH IN CONTEXT

1. Systematic review: Previous studies have identified a
relationship between epigenetic ageing and age-
related outcomes, including Alzheimer’s disease
pathology and reduced cognitive performance. In
this study, we present the largest study of DNA
methylation–based ageing to date. We assessed the
relationship between the epigenetic clock and both
genetic and environmental Alzheimer’s disease risk
factors in a cohort of over 5000 individuals.

2. Interpretation: We identified significant associations
between epigenetic age acceleration and lifestyle-
related risk factors, but not genetic risk factors.
Potentially modifiable factors were including body
mass index, total:high-density lipoprotein choles-
terol ratios, smoking, high blood pressure, and
socioeconomic status.

3. Future directions: We hypothesize that behavioral
changes with an aim to modify such risk factors
may improve individual risk profiles for Alzheimer’s
disease, potentially decreasing the rate of epigenetic
age acceleration. As this hypothesis cannot be ad-
dressed due to the cross-sectional design of the
present study, longitudinal analyses are warranted.
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