148 research outputs found

    Revisiting ENSO and IOD Contributions to Australian Precipitation

    Get PDF
    Tropical modes of variability, such as El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD), exert a strong influence on the interannual variability of Australian precipitation. Nevertheless, commonly used indices of ENSO and IOD variability display significant co-variability that prevents a robust quantification of the independent contribution of each mode to precipitation anomalies. This co-variability issue is often addressed by statistically removing ENSO or IOD variability from the precipitation field before calculating teleconnection patterns. However, by performing a suite of coupled and uncoupled modeling experiments in which either ENSO or IOD variability is physically removed, we show that ENSO-only-driven precipitation patterns computed by statistically removing the IOD influence significantly underestimate the impact of ENSO on Australian precipitation variability. Inspired by this, we propose a conceptual model that allows one to effectively separate the contribution of each mode to Australian precipitation variability

    The learning sciences in Initial Teacher Education - responding to the Core Content Framework

    Get PDF
    The new ITT Core Content Framework (DfE 2019a) and the Early Career Framework (DfE 2019b) have all been informed by the ‘Learning Sciences’, particularly by cognitive neuropsychology with an emphasis on learning as memory. This provides an urgency for ITE providers to address scientific accounts of learning in their programmes. We see this as a provocation for critical thought and an opportunity to support our trainees in becoming ‘reflective professionals’ rather than ‘executive technicians’ (Winch et al. 2015). In this session, we shared the approach we are taking at Bath Spa University through our ‘Learning Sciences in ITE’ project (funded by The Wellcome Trust). We are taking a Design-Based Research (DBR) approach to the project. DBR involves cyclical processes of design, trial, feedback and reflection in a real-life context. (e.g. Anderson & Shattuck, 2012). To date, we have developed a package of open access resources to critically engage trainee teachers with ideas from the learning sciences such as challenging VAK and considering retrieval practice (available at: https://www.bathspa.ac.uk/learning-sciences). By taking this approach we reduced and unsettled trainee belief in neuromyths and successfully positioned the trainees as ‘critical consumers’ of neuroscience (McMahon, Yeh & Etchells 2019). We are maintaining this emphasis on critical research literacy and some neuromyth busting, but moving on to look at the learning sciences as another lens through which we can view learning and pedagogy. We shared how the rationale for our approach emerged from education tutors in collaboration with colleagues in biological and neuropsychology (McMahon & Etchells, 2018). We have looked within and beyond the ITT Core Content Framework to identify and select key ideas from the science of learning and map these across the primary ITE curriculum

    Evaluating the relationship between interannual variations in the Antarctic ozone hole and Southern Hemisphere surface climate in chemistry-climate models

    Get PDF
    Studies have recently reported statistically significant relationships between observed year-to-year spring Antarctic ozone variability and the Southern Hemisphere Annular Mode and surface temperatures in spring-summer. This study investigates whether current chemistry-climate models (CCMs) can capture these relationships, in particular, the connection between November total column ozone (TCO) and Australian summer surface temperatures, where years with anomalously high TCO over the Antarctic polar cap tend to be followed by warmer summers. The interannual ozone-temperature teleconnection is examined over the historical period in the observations and simulations from the Whole Atmosphere Community Climate Model (WACCM) and nine other models participating in the Chemistry-Climate Model Initiative (CCMI). There is a systematic difference between the WACCM experiments forced with prescribed observed sea surface temperatures (SSTs) and those with an interactive ocean. Strong correlations between TCO and Australian temperatures are only obtained for the uncoupled experiment, suggesting that the SSTs could be important for driving both variations in Australian temperatures and the ozone hole, with no causal link between the two. Other CCMI models also tend to capture this relationship with more fidelity when driven by observed SSTs, though additional research and targeted modelling experiments are required to determine causality and further explore the role of model biases and observational uncertainty. The results indicate that CCMs can reproduce the relationship between spring ozone and summer Australian climate reported in observational studies, suggesting that incorporating ozone variability could improve seasonal predictions, however more work is required to understand the difference between the coupled and uncoupled simulations

    Evaluating the relationship between interannual variations in the Antarctic ozone hole and Southern Hemisphere surface climate in chemistry-climate models

    Get PDF
    Studies have recently reported statistically significant relationships between observed year-to-year spring Antarctic ozone variability and the Southern Hemisphere Annular Mode and surface temperatures in spring-summer. This study investigates whether current chemistry-climate models (CCMs) can capture these relationships, in particular, the connection between November total column ozone (TCO) and Australian summer surface temperatures, where years with anomalously high TCO over the Antarctic polar cap tend to be followed by warmer summers. The interannual ozone-temperature teleconnection is examined over the historical period in the observations and simulations from the Whole Atmosphere Community Climate Model (WACCM) and nine other models participating in the Chemistry-Climate Model Initiative (CCMI). There is a systematic difference between the WACCM experiments forced with prescribed observed sea surface temperatures (SSTs) and those with an interactive ocean. Strong correlations between TCO and Australian temperatures are only obtained for the uncoupled experiment, suggesting that the SSTs could be important for driving both variations in Australian temperatures and the ozone hole, with no causal link between the two. Other CCMI models also tend to capture this relationship with more fidelity when driven by observed SSTs, though additional research and targeted modelling experiments are required to determine causality and further explore the role of model biases and observational uncertainty. The results indicate that CCMs can reproduce the relationship between spring ozone and summer Australian climate reported in observational studies, suggesting that incorporating ozone variability could improve seasonal predictions, however more work is required to understand the difference between the coupled and uncoupled simulations

    Use of terrestrial field studies in the derivation of bioaccumulation potential of chemicals

    Get PDF
    Field-based studies are an essential component of research addressing the behavior of organic chemicals, and a unique line of evidence that can be used to assess bioaccumulation potential in chemical registration programs and aid in development of associated laboratory and modeling efforts. To aid scientific and regulatory discourse on the application of terrestrial field data in this manner, this article provides practical recommendations regarding the generation and interpretation of terrestrial field data. Currently, biota-to-soil-accumulation factors (BSAFs), biomagnification factors (BMFs), and bioaccumulation factors (BAFs) are the most suitable bioaccumulation metrics that are applicable to bioaccumulation assessment evaluations and able to be generated from terrestrial field studies with relatively low uncertainty. Biomagnification factors calculated from field-collected samples of terrestrial carnivores and their prey appear to be particularly robust indicators of bioaccumulation potential. The use of stable isotope ratios for quantification of trophic relationships in terrestrial ecosystems needs to be further developed to resolve uncertainties associated with the calculation of terrestrial trophic magnification factors (TMFs). Sampling efforts for terrestrial field studies should strive for efficiency, and advice on optimization of study sample sizes, practical considerations for obtaining samples, selection of tissues for analysis, and data interpretation is provided. Although there is still much to be learned regarding terrestrial bioaccumulation, these recommendations provide some initial guidance to the present application of terrestrial field data as a line of evidence in the assessment of chemical bioaccumulation potential and a resource to inform laboratory and modeling efforts

    The Learning Sciences and the Core Content Framework for Initial Teacher Training

    Get PDF
    This document is an outcome of the project 'The Learning Sciences in Initial Teacher Education' based at Bath Spa University (2019-2020) and funded by the Wellcome Trust. Our intention is to support teacher educators in responding to the 2019 Core Content Framework for Initial Teacher Training by exploring the underpinning research from the ‘Learning Sciences’

    Academic freedom in Europe: time for a Magna Charta?

    Get PDF
    This paper is a preliminary attempt to establish a working definition of academic freedom for the European Union states. The paper details why such a definition is required for the European Union and then examines some of the difficulties of defining academic freedom. By drawing upon experience of the legal difficulties beset by the concept in the USA and building on previous analyses of constitutional and legislative protection for academic freedom, and of legal regulations concerning institutional governance and academic tenure, a working definition of academic freedom is then derived. The resultant definition which, it is suggested, could form the basis for a European Magna Charta Libertatis Academicae, goes beyond traditional discussions of academic freedom by specifying not only the rights inherent in the concept but also its accompanying duties, necessary limitations and safeguards. The paper concludes with proposals for how the definition might be tested and carried forward

    Lattice Dynamics and Thermal Equation of State of Platinum

    Get PDF
    Platinum is widely used as a pressure calibration standard. However, the established thermal EOS has uncertainties, especially in the high PP-TT range. We use density functional theory to calculate the thermal equation of state of platinum, up to 550 GPa and 5000 K. The static lattice energy is computed by using the LAPW method, with LDA, PBE, and the recently proposed WC functional. The electronic thermal free energy is evaluated using the Mermin functional. The vibrational part is computed within the quasi-harmonic approximation using density functional perturbation theory and pseudopotentials. Special attention is paid to the influence of the electronic temperature to the phonon frequencies. We find that in overall LDA results agree best with the experiments. Based on the DFT calculations and the established experimental data, we develop a consistent thermal EOS of platinum as a reference for pressure calibration.Comment: 24pages, 13 giure

    Occupational, domestic and environmental mesothelioma risks in the British population: a case–control study

    Get PDF
    We obtained lifetime occupational and residential histories by telephone interview with 622 mesothelioma patients (512 men, 110 women) and 1420 population controls. Odds ratios (ORs) were converted to lifetime risk (LR) estimates for Britons born in the 1940s. Male ORs (95% confidence interval (CI)) relative to low-risk occupations for >10 years of exposure before the age of 30 years were 50.0 (25.8–96.8) for carpenters (LR 1 in 17), 17.1 (10.3–28.3) for plumbers, electricians and painters, 7.0 (3.2–15.2) for other construction workers, 15.3 (9.0–26.2) for other recognised high-risk occupations and 5.2 (3.1–8.5) in other industries where asbestos may be encountered. The LR was similar in apparently unexposed men and women (∌1 in 1000), and this was approximately doubled in exposed workers' relatives (OR 2.0, 95% CI 1.3–3.2). No other environmental hazards were identified. In all, 14% of male and 62% of female cases were not attributable to occupational or domestic asbestos exposure. Approximately half of the male cases were construction workers, and only four had worked for more than 5 years in asbestos product manufacture
    • 

    corecore