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EDITOR'S NOTE:

This paper is 1 of 3 articles resulting from a workshop sponsored by The Health and Environmental Sciences Institute (HESI)
held in January 2013 in Miami, Florida, USA. The aim of the workshop was to review current practices, identify data gaps, and
provide recommendations to improve current methods and develop new methods supporting both prospective and retrospective
environmental assessments of organic chemical bioaccumulation in terrestrial ecosystems.

ABSTRACT

Field-based studies are an essential component of research addressing the behavior of organic chemicals, and a unique
line of evidence that can be used to assess bioaccumulation potential in chemical registration programs and aid in
development of associated laboratory and modeling efforts. To aid scientific and regulatory discourse on the application of
terrestrial field data in this manner, this article provides practical recommendations regarding the generation and
interpretation of terrestrial field data. Currently, biota-to-soil-accumulation factors (BSAFs), biomagnification factors (BMFs),
and bioaccumulation factors (BAFs) are the most suitable bioaccumulation metrics that are applicable to bioaccumulation
assessment evaluations and able to be generated from terrestrial field studies with relatively low uncertainty.
Biomagnification factors calculated from field-collected samples of terrestrial carnivores and their prey appear to be
particularly robust indicators of bioaccumulation potential. The use of stable isotope ratios for quantification of trophic
relationships in terrestrial ecosystems needs to be further developed to resolve uncertainties associated with the calculation
of terrestrial trophic magnification factors (TMFs). Sampling efforts for terrestrial field studies should strive for efficiency, and
advice on optimization of study sample sizes, practical considerations for obtaining samples, selection of tissues for analysis,
and data interpretation is provided. Although there is still much to be learned regarding terrestrial bioaccumulation, these
recommendations provide some initial guidance to the present application of terrestrial field data as a line of evidence in the
assessment of chemical bioaccumulation potential and a resource to inform laboratory and modeling efforts. Integr Environ
Assess Manag 2016;12:135-145. © 2015 The Authors. Integrated Environmental Assessment and Management published by
Wiley Periodicals, Inc. on behalf of SETAC.
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INTRODUCTION

The potential of compounds to bioaccumulate in organisms
and to transfer and biomagnify in food webs is a key
consideration in chemical regulation (Weisbrod et al. 2009).
Currently, the assessment of the bioaccumulation potential is
primarily based on data derived from marine or freshwater
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(wileyonlinelibrary.com). organisms and food webs, and many assessments include field
DOI: 10.1002/ieam.1717 data collected from wild aquatic organisms. However,
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Attribution License, which permits use, distribution and reproduction in any in terrestrial ecosystems are considered to be very different
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assessments derived from aquatic systems may not be
predictive of bioaccumulation potential in terrestrial systems
(Kelly and Gobas 2001, 2003; Kelly et al. 2007).

Itis generally understood that soil properties such as organic C
content and quality affect the bioavailability of chemicals, and
thus uptake of organic compounds by soil organisms (Chung
and Alexander 2002; Amorim et al. 2005; Cornelissen et al.
2005). Furthermore, the availability of organic compounds in
soil may decrease over time due to aging and consecutive
increased binding of the chemical to soil particles and weather-
ing or degradation of the compound (Belfroid et al. 1995;
Styrishave et al. 2008; Johnson, Salice et al. 2009). Current
methods used to predict bioaccumulation potential of organics
in aquatic systems rely on measures of hydrophobicity and
coefficients such as logKow. However, in terrestrial systems,
logKow alone does not explain or predict bioaccumulation
(Belfroid et al. 1995). In terrestrial systems, biotransformation
seems to have more profound effects on bioaccumulation and
biomagnification in food webs (Kelly et al. 2007; McLachlan
et al. 2011) (see Supplemental Data for more details).

Despite the possible discrepancy between bioaccumulation
in aquatic and terrestrial ecosystems, explicit assessment of
terrestrial bioaccumulation data are not specified in national
legislations or specifically required in bioaccumulation assess-
ments. In the European Union (EU), the amendment of Annex
XIII in the current Regulation on Registration, Evaluation,
Authorisation and Restriction of Chemicals (REACH) re-
quires consideration of all available bioaccumulation metrics as
part of a weight of evidence analysis. As a result, terrestrial field
studies or comparable laboratory simulations, if available, are
recommended for EU chemical assessments (Moermond et al.
2012; Vierke et al. 2012; Gottardo et al. 2014), although
formal guidance or recommendations on the use of terrestrial
bioaccumulation data and thresholds are not available.

In January 2013, the ILSI Health and Environmental
Sciences Institute (HESI) sponsored a workshop on terrestrial
bioaccumulation in Miami, Florida, USA. The goal of the
workshop was to compile information and inform upon a
framework for the assessment of bioaccumulation in terrestrial
food webs that would be useful in chemical registration
programs. This article provides an overview on the different
approaches to evaluate organic chemicals data generated from
wild terrestrial organisms and abiotic media collected from
field investigations. This article also addresses the advantages
and opportunities for using terrestrial field data in bioaccu-
mulation assessments and provides practical recommendations
for generating and applying such data. Companion articles
provide similar focus on the use of data generated from
terrestrial laboratory studies (Hoke et al. this issue) and
environmental modeling (Gobas et al. this issue).

Importance terrestrial field data in bioaccumulation
assessments

Measurement of organic chemicals in aquatic organisms and
abiotic media provide important data that have been used to
evaluate bioaccumulation potential (Selck et al. 2012).
Depending on the types of information collected, chemical
concentration data from field-collected samples can be used to
calculate bioaccumulation factors (BAFs), biomagnification
factors (BMFs), and trophic magnification factors (TMFs)
(Gobas et al. 2009; Conder et al. 2012). Bioaccumulation data
from terrestrial settings can also be easily expressed in this
manner, including biota-soil accumulation factors (BSAFs),
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BAFs, BMFs, and TMFs (Gobas et al. this issue). When derived
in terrestrial field studies, these metrics can be used in a weight
of evidence approach to assess the bioaccumulation potential
of chemicals that have been released in the environment in
similar approaches as those used to evaluate data from aquatic
bioaccumulation potential assessments. In addition, such data
can be used to inform the development, validation, and
refinement of laboratory tests and models for prospective
assessments of chemicals that have yet to be released into the
environment.

There is a wealth of terrestrial field data that can be used
to assess bioaccumulation potential (see Supplemental Data
for >20 different studies). The available evidence strongly
suggests that terrestrial field data provide information that is
not always consistent with data generated from aquatic
studies. For example, field data compiled for 4 example
chemicals, PCB-153, pyrene, and perfluorooctane sulfonic
acid (PFOS), demonstrate both the utility of and need for
consideration of terrestrial data in the regulatory assessment
of bioaccumulation potential (Figure 1; for details on the
studies and the derivation of the metrics, see the Supple-
mental Data). In the case of PCB-153, the BCFs derived from
aquatic studies imply high potential for accumulation, but
the BSAFs for invertebrates and plants (approximate
terrestrial analogues to aquatic BCFs) indicate a much lower
potential to bioaccumulate in terrestrial systems (Figure 1A).
Furthermore, the examples indicate that aquatic derived
BCFs and BAFs do not always match estimates of bio-
accumulation potential derived from terrestrial (soil) organ-
isms or avian and mammalian species. For pyrene, a
metabolizable polycyclic aromatic hydrocarbon, bioaccumu-
lation potential is supported by aquatic BCF and BAF
estimates, but not by 1) BSAFs for terrestrial invertebrates
and plants (generally <1) or 2) BMF-data from homeother-
mic animals in terrestrial and aquatic food webs (Figure 1B).
The converse (bioaccumulation potential not indicated by
aquatic BCFs and BAFs but instead by BMF data for
homeotherms) is found with PFOS (Figure 1C).

Recommendations for generating field study data useful to
terrestrial bioaccumulation assessments

Given that terrestrial field data have value in providing
useful evidence in bioaccumulation potential assessment for
particular chemicals, as well as information useful to modeling
and laboratory methods in support of bioaccumulation
assessments, workshop participants were able to provide
some initial practical recommendations regarding the inter-
pretation and generation of terrestrial field data. Workshop
participants focused on several primary issues, as detailed in
the remainder of this section: the selection of species and tissue
types to include in investigations or to focus upon in existing
data sets; considerations for spatial and temporal aspects of
sampling and data analysis; available methods to determine
food web relationships; considerations for sample sizes needed
for robust bioaccumulation data analysis; and general practical
advice on obtaining samples from terrestrial organisms. The
guidance provided may need to be refined as advances are made
in regulatory and technical aspects related to the assessment of
bioaccumulation potential.

Selection of species. Central to species selection is the need to
identify trophic guilds and predator—prey interactions that
can generate data reflecting key food web relationships.
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Figure 1. Bioaccumulation metric values for PCB-153 (A), pyrene (B), and PFOS (C). Line markers include one, the scientific definition of bioaccumulation (blue
line); and values of 1000 (orange line), 2000 (red line), and 5000 (purple line) associated with various bioaccumulation levels of concern for US, Canadian, and/or

European regulatory agencies.

Measurements of plant tissues and soft-bodied soil inverte-
brates should be used to generate BSAFs, because these
organisms are in direct contact with the soil. The use of BSAFs
is not recommended for estimating bioaccumulation potential
in higher trophic level vertebrate species (i.e., reptiles, birds,
and mammals) because of the considerable uncertainties
associated with exposure and uptake. The primary route of
organic chemical exposure for these organisms is generally

dietary (USEPA 1997, 2005), with only a minor contribution
from soil ingestion (Beyer et al. 1994). Consequently, chemical
bioaccumulation for these species in terrestrial systems is
better represented by BMFs or TMFs.

Calculation of BMF values requires concentrations of
chemical in a predator (or consumer) and its diet, usually
represented by one or more food items. Selection of a predator—
prey pair to measure is an option that should be considered in
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experimental design and interpretation of BMFs from trophic
level data sets. It is clear that BMF values in aquatic systems
vary among trophic levels (Conder et al. 2012), suggesting that
a particular species or component of a terrestrial food web may
also be a more robust indicator of bioaccumulation. To evaluate
this hypothesis, BMFs and BSAFs for hydrophobic chemicals
typically considered bioaccumulative (e.g., PCBs, PBDEs, and
DDTs) were compiled from 8 studies that evaluated chemical
residues in terrestrial invertebrates (earthworms) exposed in
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the laboratory to field-contaminated soils, and matched
predator—diet pairs for mammalian insectivore, omnivore,
and carnivore species as well as avian carnivore species (Hebert
et al. 1994; Belfroid et al. 1995; Harris et al. 2000; Kelly and
Gobas 2001; Matscheko et al. 2002; Blankenship et al. 2005;
Voorspoels et al. 2007; White et al. 2007) (see Supplemental
Data). These data suggest that soil invertebrates and avian
carnivores provide the most compelling measures of bioaccu-
mulation potential (lowest variance coefficient, Figure 2).
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Figure 2. Mean (95% Cl) BSAFs (g, soil 0C/g, lipid) for soil invertebrates (A), BMFs (g, diet lipid/g, predator lipid) for birds (B) and BMFs for mammals

(C) associated with p,p-DDE, PCBs congeners (noted “CB” plus congener number), and PDBE congeners (noted “BD" plus congener number). Blue line indicates a

value of 1 (threshold for bioaccumulation potential). “L" and “M" labels note BMFs developed using liver and muscle sample data, respectively. Other values were
based on averages of BMFs based on liver and muscle tissues (e.g., buzzard, sparrowhawk, and fox), tissue samples not identified by the source study (e.g.,

shrew, wren, robin), or soil-voided whole body and soil measurements (e.g., e

arthworms).
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Approximately 80% of invertebrate BSAFs (Figure 2A) and
avian BMFs (Figure 2B) were greater than 1 for bioaccumulative
chemicals, compared to less than 20% of the BMFs for
mammalian species (Figure 2C). The data indicate that
carnivores exhibited greater bioaccumulation potential than
other guilds and, thus, carnivores may be the most appropriate
sentinel species for measuring bioaccumulation potential in
terrestrial field studies. For example, data for avian invertivores
tended to indicate bioaccumulation less often (only 1 of 4 avian
invertivore BMFs indicated bioaccumulation potential) than
data for avian carnivores (Figure 2B), and only 5 of the 30 BMFs
for carnivorous mammals were indicative of bioaccumulation
(Figure 2C).

Substantially greater BMF values for carnivores are not
unexpected, as noted in modeling and empirical studies (Kelly
and Gobas 2003; Debruyn and Gobas 2006; Kelly et al. 2007).
Carnivores tend to exhibit high BMFs due to their top (and
sometimes apex) position in terrestrial food webs (Kelly and
Gobas 2003; Kelly et al. 2007). BMFs may increase for
predators situated at the top of food webs due to a great
number of trophic transfers from lower tier predators and prey
species (Debruyn and Gobas 2006). Greater bioaccumulation
in avian species compared to mammalian predators has been
observed in other field studies of aquatic food webs (Hop et al.
2002; Hallanger et al. 2011), suggesting that avian carnivores
may be an important guild to include in terrestrial studies
evaluating bioaccumulation potential of chemicals. Larger
avian BMFs could be related to a number of physiological or
ecological differences between birds and mammals. For
example, fish-eating birds were shown to have less cytochrome
P450-associated monooxygenase activity compared to mam-
mals (Walker 1980), leading to less metabolism and greater
accumulation of chemicals. This may be related to a relatively
low exposure to complex plant secondary metabolites and a
lack of evolutionary selection for the capacity to detoxify these
compounds. Avian species also require less water intake
compared to mammals (Sample et al. 1997), and metabolites
in urine can be re-absorbed in the cloaca (Walker 1983),
possibly resulting in reduced urinary excretion pathways
for chemicals. For terrestrial species, the respiratory elimina-
tion route is also of importance with respect to chemical
accumulation (Kelly et al. 2007). However, the avian
respiratory pathway is very efficient in O,—CO, exchange,
resulting in lower breathing rates in comparison to mammals
(normalized to body weight) (Sample et al. 1997). Such lower
breathing rates may result in less respiratory elimination of
organic contaminants. However, it is clear that more modeling
and empirical work is needed to evaluate the hypothesis that
avian carnivores may be top bioaccumulators in most
terrestrial food webs.

Selection of tissue type. Selection of tissue types and treatment
of samples should be carefully evaluated for terrestrial
bioaccumulation determinations. Field data used to derive
BSAFs for earthworms should ideally be based on depurated
(soil-free) whole body analyses. Chemicals associated with soil
within the gut of earthworms have not been transferred to the
biological compartment and, thus, do not truly represent the
process of bioaccumulation. However, if earthworms are used
to estimate a BMF, as prey item, this depuration process may
not be appropriate because predators consume nondepurated
prey. Plant-based BSAFs are usually established on the analysis
of aboveground tissues such as leaves or fruits, because those
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tissues are generally consumed by higher trophic level animals.
However, BSAFs generated from aboveground tissues are
generally lower than those based on roots due to preferential
partitioning of nonionic organic chemicals to roots than other
plant tissues (Simonich and Hites 1995; Collins et al. 2005).
Plant and fruit BSAFs can be affected by aerial deposition of
organics onto aboveground surfaces, and therefore, inaccu-
rately represent the bioaccumulation process from soil.

In general, matched predator—diet samples used to calculate
BMF values are more difficult to obtain compared to samples
needed for BSAFs, and BMF data interpretation is more
difficult. Several factors influence the collection and interpre-
tation of BMF data, including spatial variation, behavior,
habitat, time of year, reproductive status, and other character-
istics of predator and diet (Borga et al. 2012). The tissue type
targeted for sampling and testing also is an important
consideration because it is rarely practical to analyze whole
organisms, especially for larger predators. Theory suggests that
concentrations of hydrophobic compounds in tissues can be
lipid-normalized to account for differences in fugacity due to
different lipid contents. If so, BMFs based on lipid normalized
concentrations should be similar between tissue types and
provide similar information for organic compounds. To
demonstrate this important consideration, studies that in-
cluded the concentrations of organic chemicals in both the liver
and muscle tissues of organisms from terrestrial food webs
were compiled to calculate paired BMF e, and BMF,,uscle
values (see Supplemental Data). Figure 3A indicates that
BMF, uscle and BMF},ye, are related to each other and not
significantly different for legacy, nonpolar organic contami-
nants. Nevertheless, even for nonpolar organic chemicals,
rapid changes in the body condition of the organism may result
in internal remobilization of chemicals, which will disturb the
internal equilibrium (Crosse et al. 2013). In such cases, even
lipid-normalized chemical concentrations may not be compa-
rable between tissue types. Organic contaminants that do not
preferentially partition into lipids (e.g., some perfluoroalkyl
and polyfluoroalkyl substances [PFASs]), cannot be lipid
normalized to account for differences in tissue concentration,
and present challenges for evaluating bioaccumulation via
individual tissues. For example, individual tissue BMFs vary
widely for some PFASs due to differences in bioaccumulation
patterns that are not yet understood (see Figure 3B, r=—0.06
and p=0.77). To accommodate this uncertainty, BMFs are
often evaluated on a whole body basis by estimating the
concentration in the entire body on the basis of an organ mass
balance and measurement of PFASs in several different tissues
(Houde, Martin et al. 2006; Miller et al. 2011). Overall,
BMFuscle showed better agreement with BMF, holcbody than
did BMF};y., for both wolves and caribou (Figure S1). Although
whole body BMF values are preferred metrics for assessing
bioaccumulation of PFASs, BMF,, s« may appear to be an
acceptable surrogate for this specific class of chemicals.

Selection of sampling location and timing. Both spatial and
temporal variation of chemical contaminants should be taken
into account in terrestrial ecosystems when addressing
bioaccumulation of compounds under field conditions. The
first source of spatial variation is the spatial distribution of
substances in soil, which may be related to the primary source
of the compounds, their dispersal, and both soil and chemical
properties (Heywood et al. 2006). Within-site variation in soil
concentrations of organic compounds can be substantial (up to
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and wolves. Error bars represent 1 SD of the mean. Lines indicate a 1:1
relationship. Data from Kelly and Gobas (2001), Miiller et al. (2011), and
Voorspoels et al. (2007).

3 orders of magnitude) (Johnson, Korcz et al. 2009; Niemeyer
et al. 2010) and will greatly influence bioaccumulation. A
second source of spatio-temporal variation is the availability of
prey items. For example, prey availability for the little owl
(Athene noctua) varied significantly during season and among
habitat types such that modeled chemical exposures varied by
3 orders of magnitude (Schipper et al. 2012). In a field study
with small mammals, species-specific spatial habitat usage and
diet composition also greatly influenced chemical uptake, in
addition to metal bioavailability (van den Brink et al. 2011).
Such environmental and ecological factors may influence
bioaccumulation under field conditions for some chemicals to
such extend that BMFs for particular predator—prey relation-
ships may differ greatly from BMFs determined in other
seasons or dissimilar habitats.

Evidence of spatio-temporal variability from these and other
studies suggest that when calculating a BMF, it may be
preferable to evaluate the locations of prey capture relative to
the predator’s foraging range. If predators obtain most prey
from a relatively small but highly contaminated area compris-
ing a tiny fraction of its foraging range, this may bias the
calculation of the BMF. It is more appropriate to target the
collection of prey from an area defined by its predator’s
foraging range, rather than focusing on the footprint of the
total contaminated area. Additionally, it may be advantageous
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to collect several different prey items, particularly if the
predator diet varies seasonally, to derive a time-weighted
average concentration in the diet.

Assessment of food web relationships. Determining BMF and
TMF metrics that can be used to evaluate bioaccumulation
potential requires information on the food web and trophic
position to evaluate field data and design relevant and
meaningful field studies. The 2 most widely used techniques
to quantify these ecological factors are analysis of stable
isotopes in tissues and food items and dietary characterization
via gut or fecal analysis. A third technique showing promise is
the use of molecular level analysis, although this approach has
yet to be widely used in ecotoxicology studies.

At present, stable isotopes of N (">N/!*N; 8'°N) are widely
used to characterize trophic position of terrestrial organisms,
whereas C (13C/'2C; $'3C) and S (3*S/3%S; 8%4S) have been
applied to characterize diets (Peterson and Fry 1987; Kelly
2000; Koch 2008). Sulphur has been less widely used because
few laboratories routinely conduct this isotope ratio analysis.
Increases in 8'°N occur because of the preferential retention of
the heavier isotope from the diet of the consumer. This
fractionation is related to excretion of urea and other
nitrogenous substances that are enriched in "N relative to
body N pools (Parker et al. 2005). In aquatic environments,
this fractionation is relatively constant with an enrichment
factor (8'°N) of 3.0%0 to 5.0%0 between trophic levels. The
8'°N, used to calculate trophic level (TL), is often assumed to
be 3.4%o to 3.8%¢ based on a number of feeding experiments or
syntheses of the literature (Hobson and Welch 1992; Post
2002; Jardine et al. 2006). However, feeding experiments on
birds and mammals have shown that the magnitude of
fractionation increases with increasing protein content in the
diet, possibly because animals on low protein diets use most of
their dietary N for protein synthesis, and consequently have a
lower urea N flux (Koch 2008). Metabolic differences between
taxa may also be important. For example, the 8'°N between
an avian diet and its muscle tissue was only 2.4%. (Mizutani
et al. 1991). This has implications for using a single 8'°N to
estimate the trophic position of organisms within terrestrial
avian and mammalian food webs and contributes uncertainty
in the calculation of the trophic enrichment factor within food
webs.

In addition, environmental factors such as precipitation,
temperature, soil characteristics, and nutrient availability
determine plant community composition and influence
8!3C and 8'°N at the base of the terrestrial food web (Ben-
David and Flaherty 2012), and the isotope composition in
organisms can change seasonally with food availability (e.g.,
fasting in winter can increase 3'°N) (Hobson et al. 1993).
These factors can differ both spatially and temporally resulting
in variability of stable isotope signatures in terrestrial food
webs. For example, the range of 8'3C and 8'°N in the
vegetation—caribou-wolf food web, which has been studied
extensively for biomagnification of organic contaminants
(Kelly and Gobas 2001; Miiller et al. 2011), is illustrative of
the variation encountered in terrestrial food webs. In
cottongrass (Eriophorum vaginatum), aquatic sedge (Carex
aquatilis), and willow (Salix pulchra) from the same sampling
sites, 8'3C varied widely and was only moderately enriched
along the food web (1%o to 2%0) (Mdller et al. 2011). Lichen,
caribou, and wolf had similar §'3C values implying that the
caribou were mainly feeding on lichen and the wolves mainly
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on caribou or other lichen eating herbivores. In contrast, the
3'5N difference between lichen and caribou were rather large
(7%o to 8%0) compared to usually assumed 3'°N differences of
3.4%o to 3.8%o, complicating the calculation of TL values used
to calculate TMFs. Although additional source modeling (e.g.,
IsoSource) (Phillips et al. 2005) may be useful in understand-
ing dietary contributions to isotopic mass balances, it is clear
there are uncertainties that challenge the interpretation of
stable isotope signals in terrestrial food webs, and additional
study is needed before routine application for calculation of
TMF values.

Visual gut content and fecal analysis have long been used in
ecological and toxicological studies to determine the diet of
organisms. These approaches rely on the identification and
quantification of partially digested prey fragments and provide
a snapshot of the diet at any given sampling time. They can be
invasive (gut dissection) or noninvasive (collection of fecal
samples or regurgitations). Although these procedures are
inexpensive and do not require expensive instrumentation,
they do have drawbacks. For example, the level of identifica-
tion associated with gut content is sometimes limited by
mastication and digestive processes that damage specimens
resulting in fragments of tissue (Sample et al. 1993; Sample and
Whitmore 1993). Furthermore, soft-bodied prey items may
get digested more quickly than other items resulting in
underestimation of these types of items in the diet. Consider-
able expertise in taxonomy is necessary to identify diet items
based on tissue fragments, which makes the identification of
specimens to species level difficult (Soininen et al. 2009). This
can result in a somewhat subjective and even biased
identification of specimens based on experience and profes-
sional judgment. Although fecal analysis is a noninvasive
technique relative to analysis of gut content, such samples only
contain fragments of tissue that were not digested and, thus,
pose similar limitations and bias during identification. To avoid
issues with digestion or partial digestion of items collected
from gut content or fecal samples, predigestive samples can be
obtained via throat ligature techniques, which have been
successfully used for nestling birds (Mellott and Woods 1993;
Powell 1984). This technique allows for an accurate determi-
nation of food items delivered to nestlings before digestion
and can be used to ascertain site-specific concentrations of
chemicals in food items.

Molecular methods can also be useful for determining diet
and food web structure. With advances in DNA sequencing
and polymerase chain reaction (PCR)-based technology,
molecular methods have become more widely used by
ecologists as tools for diet analysis. With the availability of
free molecular databases, it is possible to use DNA barcoding
(analyzing DNA-fragments) for organism identification even
with short or degraded DNA sequences (Zaidi et al. 1999;
Hajibabaei et al. 2006; Meusnier et al. 2008). Barcoding can be
especially useful for species where the diet cannot be identified
by gut-content analysis, observation, or other methods.
Molecular methods are typically invasive in the case of gut
dissections (Chen et al. 2000; Soininen et al. 2009; Carreon-
Martinez et al. 2011) and noninvasive when using fecal
samples (Corse et al. 2010; Zeale et al. 2011). PCR-based diet
analysis is successfully accomplished in both aquatic and
terrestrial systems and usually renders results with better
taxonomic resolution than visual methods (Soininen et al.
2009; Carreon-Martinez et al. 2011). However, because each
species may differ in the amount of DNA present per unit
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biomass and/or in tissue digestibility, molecular techniques
provide merely a qualitative description of the diet (Zaidi et al.
1999). Laboratory testing may be used to calibrate PCR
techniques for each food type to achieve semiquantitative
results (Soininen et al. 2009; Deagle et al. 2010). One
disadvantage of this approach however, is the inability to
detect and distinguish primary and secondary predation
(Sheppard et al. 2005). Because contamination of the sample
with the predator’s DNA is likely (e.g., during gut dissection),
detection of cannibalism can also be difficult (Deagle et al.
2010; Carreon-Martinez et al. 2011). There are other practical
considerations that may affect results such as gene and primer
selection, sample preservation, temperature, and time since
ingestion (for review, see Sheppard and Harwood 2005; King
et al. 2008; Valentini et al. 2009).

Sample size. Sample size is a critical factor in statistical
interpretation of bioaccumulation data, which is of great
importance given the high variability and low sample sizes that
are more the rule than the exception in field data sets. For
example, results in Figure 2 indicate that a single BMF value
should not be taken at face value without accounting for
measurement variation. Forty-eight of the 59 (>80%) BMF
and BSAF values in Figure 2 appear to be greater than 1
(indicating bioaccumulation potential). However, nearly 40%
of these values were not statistically greater (a =0.05) than 1.
Statistical comparison of field bioaccumulation information
should be a requirement of all field studies reporting such
information, and raw data, measures of variability and sample
size should always be included to enable other researchers to
use the data for assessing bioaccumulation potential (Borga
et al. 2012; Conder et al. 2012).

The results shown in Figure 2 suggest that at least 3 or 4
replicates are the minimum sample size required for generating
robust BMF data. Although avian BMFs in Figure 2B were
variable (in part due to small sample sizes), higher values
tended to offset variability and provide a statistically powerful
estimate, capable of detecting significant bioaccumulation
potential. Earthworm BSAFs for comparable chemicals tended
to be 2 to 3 orders of magnitude lower than avian carnivore
BMFs, but the large number of replicates (n > 10) improved
statistical power (Figure 2A). Mammalian BMFs (Figure 2C)
exhibited considerable variability, suggesting the need for
greater replication than required to estimate avian BMFs.

Practical advice on obtaining samples

Obtaining adequate numbers of samples may be a practical
challenge in terrestrial bioaccumulation studies. For example,
in marine bioaccumulation studies, colonial breeding birds are
often studied because collection of samples from animals is
generally most efficient when they occur in aggregations or
colonies. However, with some exception (e.g., European bee-
eater, Merops apiaster, at a mining site) (Lopes et al. 2010)
most terrestrial avian species generally do not aggregate. Some
terrestrial studies take advantage of the willingness of cavity-
nesting avian species to use nest boxes (e.g., tawny owl [Strix
aluco] [Bustnes et al. 2007]; American kestrel [Falco
sparverius] [Hebert et al. 1994]; tree swallow [Tachycineta
bicolor] [Custer 2011]; small passerines Parus and Ficedula
spp. [van den Steen et al. 2009; Berglund et al. 2012] house
wrens [Troglodytes aedon] and eastern bluebirds [Sialia
sialis] [Fredricks et al. 2010]; and the widespread European
starling [Sturnus vulgaris] [Eens et al. 2013]). However, in
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contrast to avian species, most mammalian species will
generally not use provided shelter or nesting structures, which
leaves the collection of mammalian samples more difficult.

A particularly efficient sampling approach involves leverag-
ing sampling efforts from other activities or sampling
programs. For example, tissue samples may be obtained
from hunters (Conder and Lanno 1999; Miiller et al. 2011) or
from biologists and citizen scientists that collect animals found
dead (van den Brink and Ma 1998). There are a growing
number of environmental specimen banks located around the
world (Becker et al. 2006) and long-term environmental
monitoring projects which may offer the opportunity to
provide tissue samples from controlled effort. Such specimen
banks and programs have generally been designed to collect
samples that are of value in assessing spatial and temporal
variation in contaminant concentrations either in sentinel
species and/or in species of particular conservation concern or
interest (Elliott et al. 2005; Hebert and Weseloh 2006;
Norstrom and Hebert 2006; Braune et al. 2007; Anderson et al.
2009; Helgason et al. 2009; Crosse et al. 2012). Data from
these samples can be used to derive information on
bioaccumulation potential or efforts to support modeling or
data interpretation approaches. For example, patterns of PCBs,
PBDEs, and stable isotopes of H, C, and N in eggs from
peregrine falcons (Falco peregrinus) varied markedly among
eggs collected from “big city” versus “coastal” nests, and
revealed the need for data on dietary variation to decipher
pathways and processes of biomagnification in a terrestrial top
predators (Park et al. 2011). Archived liver samples of
terrestrial raptors, such as Cooper’s hawk (Accipiter cooperi),
peregrine falcon, and Eurasian sparrowhawk (A. nisus), have
been examined for spatial trends (urban to rural gradients) and
accumulation patterns of POPs in relation to patterns of stable
isotopes (Crosse et al. 2012, Crosse et al. 2013). When using
archived samples from specimen banks, it should be made
certain that concentrations of chemicals in the samples
have not been affected by storage conditions and length of
storage period. Especially in case of new emerging chemicals,
without an analytical track-record issues with quality control
and/or quality assurance should be considered when using
archived samples.

Sublethal and minimally invasive sampling procedures
should be considered for sampling programs, as lethal sampling
may not be practical for many species, such as top predators,
charismatic megafauna, and species of special conservation
status (threatened and endangered). As long as species that are
easily captured and handled in a manner that does not incur
lethality, several types of tissues may be collected nondestruc-
tively (D Have et al. 2006). For PFASs, blood is often used to
determine trophic transfer based on the specific tissues (Tomy
et al. 2004; Houde, Bujas et al. 2006). Relationships between
levels of PFASs in avian feathers and liver have been established
(Meyer et al. 2009). Feathers have also been used to monitor
POPs in the chicks of predatory birds (Eulaers et al. 2011).
Depending on the study purpose, the calibration of feathers,
blood, and body tissues in target species is recommended
particularly for less persistent contaminants that may occur at
proportionally greater concentrations of these compounds
than in other tissue types (Dauwe et al. 2005; Jaspers et al.
2007; Espin et al. 2010; Garcia-Fernandez et al. 2013). For
mammals, hair can provide a noninvasive sample. For example,
significant relationships have been established between con-
centrations of total PBDEs and PBDE congener-47 in the hair
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of hedgehogs (Erinaceus europaeus) relative to internal tissues,
although less persistent congeners were more predominant
in hair than other tissues (D’Havé et al. 2007). Preen oil has
been used to analyze POPs in marine birds, and this may be
applicable to terrestrial species as well (van den Brink et al.
1998).

Fecal matter is another noninvasive approach to monitor
uptake and bioaccumulation in some mammalian species. For
example, taking advantage of the use of regular latrine sites by
river otters, a several researchers used scat samples to infer
body burden of PCBs and other persistent contaminants
(Mason et al. 1992; Smit et al. 1994; Elliott et al. 2008). Scats
that have decreased relative levels of metabolizable PCB
congeners reflect internal concentrations of otters and may
therefore be used to assess accumulation in otters (van den
Brink and Jansman 2006). The approach has been further
developed using fecal DNA to identify individual animals and
track their movement and contaminant exposure in time and
space (Guertin et al. 2010).

CONCLUSIONS

Regulatory assessment of chemical bioaccumulation poten-
tial can benefit from data provided by terrestrial field studies,
and initial work indicates that aquatic data may not completely
represent bioaccumulation potential in terrestrial ecosystems.
Data from samples obtained from terrestrial field studies can be
used to derive bioaccumulation metrics that can be interpreted
in existing chemical registration programs, and can also be used
in the development, validation, and refinement of laboratory
tests and models for prospective assessments of chemicals that
have not been released to the environment.

In this article, we present practical recommendations and
key issues that should be considered by scientists involved in
research that elucidates chemical bioaccumulation potential in
terrestrial systems and by regulatory authorities involved in the
assessment of bioaccumulation potential within programs
designed to register chemicals. BSAFs, BAFs, and BMFs appear
to be the most suitable metrics that can be generated from
terrestrial field studies. BSAF values are robust when based on
measurements of soft-bodied soil organisms or plants. For
higher trophic-level organisms, the BMF currently appears to
be more robust that the TMF, which may reflect uncertainty in
quantifying the trophic level of terrestrial animals using stable
isotope signals. BMF values for lipophilic, nonpolar chemicals
can be calculated using a variety of sample types (e.g., muscle,
liver) if concentrations are expressed on a lipid-normalized
basis. BMF values for avian carnivores appear to be particularly
useful values for understanding chemical bioaccumulation, as
this trophic guild appears to accumulate chemicals to a greater
degree than other trophic levels, although this hypothesis
deserves further investigation.

Sampling programs and efforts to evaluate data should strive
for maximum efficiency in experimental design. It is essential,
nonetheless, to achieve the appropriate statistical and inter-
pretive power in field studies to optimize the achievement of
scientific goals and, ultimately, the information needed to
inform regulatory decision making. For some terrestrial food
webs, as few as 4 to 5 predator—prey sample pairs may be
sufficient for estimation of a relatively precise BMF. For other
food webs, researchers may be able to take advantage of
specimen tissue banks and long-term monitoring programs to
reduce species collection efforts and obtain the tissues to
support their research. Noninvasive and nonlethal sampling
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efforts are also possible using samples of blood, hair, feather,
feces, and other tissues.

More work is needed to improve the design of terrestrial field
studies that address chemical bioaccumulation, as well as the
subsequent application of field data to improve decision
making in chemical registration programs. Several sources of
uncertainty remain challenging such as seasonal variability in
the diets of terrestrial organisms and the high spatial
heterogeneity of the distribution of chemicals in terrestrial
environments. The determination of food web relationships
and diet preferences for predators is critical for developing
BMFs and TMFs. Studies on the use of stable isotope ratios for
quantifying trophic relationships in terrestrial ecosystems are
needed to resolve uncertainties in the calculations of TMFs. In
conclusion, addressing recommendations provided in this
overview, as well as future scientific and regulatory discourse,
will facilitate the application of terrestrial field data as a line of
evidence in the assessment of chemical bioaccumulation
potential.
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