77 research outputs found

    Possible link between Earth's rotation rate and oxygenation

    Get PDF
    The biotic and abiotic controls on major shifts in atmospheric oxygen and the persistence of low-oxygen periods over a majority of Earth’s history remain under debate. Explanations of Earth’s stepwise pattern of oxygenation have mostly neglected the effect of changing diel illumination dynamics linked to daylength, which has increased through geological time due to Earth’s rotational deceleration caused by tidal friction. Here we used microsensor measurements and dynamic modelling of interfacial solute fluxes in cyanobacterial mats to investigate the effect of changing daylength on Precambrian benthic ecosystems. Simulated increases in daylength across Earth’s historical range boosted the diel benthic oxygen export, even when the gross photosynthetic production remained constant. This fundamental relationship between net productivity and daylength emerges from the interaction of diffusive mass transfer and diel illumination dynamics, and is amplified by metabolic regulation and microbial behaviour. We found that the resultant daylength-driven surplus organic carbon burial could have shaped the increase in atmospheric oxygen that occurred during the Great and Neoproterozoic Oxidation Events. Our suggested mechanism, which links the coinciding increases in daylength and atmospheric oxygen via enhanced net productivity, reveals a possible contribution of planetary mechanics to the evolution of Earth’s biology and geochemistry

    On eddy viscosity, energy cascades, and the horizontal resolution of gridded satellite altimeter products

    Get PDF
    Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 283–300, doi:10.1175/JPO-D-11-0240.1.Motivated by the recent interest in ocean energetics, the widespread use of horizontal eddy viscosity in models, and the promise of high horizontal resolution data from the planned wide-swath satellite altimeter, this paper explores the impacts of horizontal eddy viscosity and horizontal grid resolution on geostrophic turbulence, with a particular focus on spectral kinetic energy fluxes Π(K) computed in the isotropic wavenumber (K) domain. The paper utilizes idealized two-layer quasigeostrophic (QG) models, realistic high-resolution ocean general circulation models, and present-generation gridded satellite altimeter data. Adding horizontal eddy viscosity to the QG model results in a forward cascade at smaller scales, in apparent agreement with results from present-generation altimetry. Eddy viscosity is taken to roughly represent coupling of mesoscale eddies to internal waves or to submesoscale eddies. Filtering the output of either the QG or realistic models before computing Π(K) also greatly increases the forward cascade. Such filtering mimics the smoothing inherent in the construction of present-generation gridded altimeter data. It is therefore difficult to say whether the forward cascades seen in present-generation altimeter data are due to real physics (represented here by eddy viscosity) or to insufficient horizontal resolution. The inverse cascade at larger scales remains in the models even after filtering, suggesting that its existence in the models and in altimeter data is robust. However, the magnitude of the inverse cascade is affected by filtering, suggesting that the wide-swath altimeter will allow a more accurate determination of the inverse cascade at larger scales as well as providing important constraints on smaller-scale dynamics.BKA received support from Office of Naval Research Grant N00014-11-1-0487, National Science Foundation (NSF) Grants OCE-0924481 and OCE- 09607820, and University of Michigan startup funds. KLP acknowledges support from Woods Hole Oceanographic Institution bridge support funds. RBS acknowledges support from NSF grants OCE-0960834 and OCE-0851457, a contract with the National Oceanography Centre, Southampton, and a NASA subcontract to Boston University. JFS and JGR were supported by the projects ‘‘Global and remote littoral forcing in global ocean models’’ and ‘‘Agesotrophic vorticity dynamics of the ocean,’’ respectively, both sponsored by the Office of Naval Research under program element 601153N.2013-08-0

    Improved Internal Wave Spectral Continuum in a Regional Ocean Model

    Full text link
    Recent work demonstrates that high‐resolution global models forced simultaneously by atmospheric fields and the astronomical tidal potential contain a partial internal (gravity) wave (IW) spectral continuum. Regional simulations of the MITgcm forced at the horizontal boundaries by a global run that carries a partial IW continuum spectrum are performed at the same grid spacing as the global run and at finer grid spacings in an attempt to fill out more of the IW spectral continuum. Decreasing only the horizontal grid spacing from 2 to 0.25 km greatly improves the frequency spectra and slightly improves the vertical wavenumber spectra of the horizontal velocity. Decreasing only the vertical grid spacing by a factor of 3 does not yield any significant improvements. Decreasing both horizontal and vertical grid spacings yields the greatest degree of improvement, filling the frequency spectrum out to 72 cpd. Our results suggest that improved IW spectra in regional models are possible if they are run at finer grid spacings and are forced at their lateral boundaries by remotely generated IWs. Additionally, consistency relations demonstrate that improvements in the spectra are indeed due to the existence of IWs at higher frequencies and vertical wavenumbers when remote IW forcing is included and model grid spacings decrease. By being able to simulate an IW spectral continuum to 0.25 km scales, these simulations demonstrate that one may be able to track the energy pathways of IWs from generation to dissipation and improve the understanding of processes such as IW‐driven mixing.Plain Language SummaryModels of internal waves (IWs) may help us to better understand the spatial geography of mixing in the ocean and are playing an increasingly important role in the planning of satellite missions. Following recent work showing that high‐resolution global models contain a partial IW spectrum, this paper describes further improvements in the spectrum seen in a high‐resolution regional model forced at the boundaries by a previously performed global IW simulation. Decreasing only the horizontal grid spacing greatly improves the frequency spectra and slightly improves the vertical wavenumber spectra of velocity. Increasing only the number of vertical levels does not yield any significant improvements. Decreasing both horizontal and vertical grid spacings yields the greatest improvement in both spectra. Our results suggest that regional models can exhibit improved IW spectra over global models if two conditions are met—they must have higher horizontal and vertical resolutions, and they must have remotely generated IWs at their boundaries. Application of the so‐called consistency relations demonstrates that the model is indeed carrying a field of high‐frequency IWs. Being able to simulate a fuller IW spectrum demonstrates that one may be able to use these models to improve the understanding of IW‐driven processes and energy pathways.Key PointsInternal gravity wave spectra in regional models are more realistic as model grid spacing decreasesThe vertical wavenumber spectra improve less dramatically than the frequency spectraInternal gravity wave consistency relations are applied to modeled spectraPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154917/1/jgrc23947_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154917/2/jgrc23947.pd

    Three-party entanglement from positronium

    Get PDF
    The decay of ortho-positronium into three photons produces a physical realization of a pure state with three-party entanglement. Its quantum correlations are analyzed using recent results on quantum information theory, looking for the final state which has the maximal amount of GHZ-like correlations. This state allows for a statistical dismissal of local realism stronger than the one obtained using any entangled state of two spin one-half particles.Comment: REVTEX, 13 pages, 3 figure
    corecore