8 research outputs found
Electrochemical Evaluation of Pb, Ag, and Zn Cyanamides/Carbodiimides
PbNCN, Ag2NCN, and ZnNCN were tested as negative
electrode materials for Li-ion batteries. A thorough analysis of the
electrochemical mechanism by X-ray diffraction and X-ray absorption
spectroscopy showed that, unlike transition metal carbodiimides, these
compounds react with lithium via a two-step reaction, starting with
conversion followed by alloying. The conversion reaction is highly
irreversible for the three compounds, whereas the reversibility of the alloying
reaction depends on the metal, that is, highly irreversible for PbNCN and
Ag2NCN which contain the cyanamide group (NCâN2â) and more
reversible for ZnNCN containing carbodiimide (âNCNâ). In the case
of the more covalent, cyanamide-type PbNCN and Ag2NCN, the conversion
reaction occurs at a higher voltage compared to the more ionic,
carbodiimide-type ZnNCN, correlated with the nature of bonding in the
NCN group and in the phases themselves. Compared to transition metal carbodiimides, these materials show rather low
performance, with no improvement in capacity as it would have been expected from the combination of conversion and
alloying
Les carbodiimides et cyanamides, une nouvelle famille de matériaux d'électrodes pour batteries Li-ion
Li-ion batteries are currently the most common choice for all portable electronic devices but also for hybrid electric vehicles and renewable energy sectors. At present, graphite is routinely employed as the anode material for Li-ion-batteries due to its excellent attributes such as long cycle life, abundance, and relatively cost effective. However, the disadvantages of graphitic anode include low energy density and safety concerns. As a consequence, alternative cost effective anode materials with high energy density and long cycle life have been widely explored. Among this transition metal based compounds are an exciting and reasonable alternative for graphite owing to their high specific capacity. Compounds with the formula MX where M is a divalent metal and X = O, S, PO4, and CO3 have been reported to be electrochemically active at average voltages around 1 volts. In spite of their high theoretical specific capacities, high irreversible capacity in the first lithiation and the weak cycling life prevent the practical use of these materials. Since 2015, the possibility of using transition metal carbodiimides (MNCN, with M = Fe, Mn, Co, Cu, Zn, Ni) have been reported, and some of them have shown promising electrochemical performance as anode materials for both Li and Na ion batteries. Like all divalent metal based electrode materials, carbodiimides have been found to suffer from high initial irreversible capacity and high operating voltage, however they show a better cycle life. The application of transition metal carbodiimides in the field of energy storage (and conversion) is still in its early stages and despite progress in electrochemical evaluation much remains to be done in order to establish the reaction mechanisms that govern the reported promising performances. Besides the transition metal carbodiimides there are still many other inorganic cyanamides and carbodiimides materials to explore. Therefore the main targets of this PhD work are (i) to assess the properties of new carbodiimides/cyanamides as electrode materials for LiBs and (ii) to establish their electrochemical reaction mechanisms via advanced operando techniques and DFT calculations. Concerning the electrochemical performance, Cr2(NCN)3 turned out to be by the far the best carbodiimide anode material with stable specific capacity of more than 600 mAh.g-1 for more than 900 cycles at 2C rate. CoNCN and FeNCN have also shown excellent electrochemical properties since they can sustain a specific capacity higher than 500 mAh.g-1 for more than 100 cycles at 2C rate. Poor performance was observed for PbNCN, Ag2NCN and ZnNCN since the practical capacities are well below the theoretical ones. These phase show also fast capacity fading during the first 20 cycles. These three performance categories correlate well with the three different reaction mechanisms established for the investigated phases. Up to now, three types of reaction mechanism have been identified including (i) Combined intercalation and conversion processes in the case of Cr2(NCN)3 as evidenced by both theoretical and experimental methods, (ii) pure conversion reaction in the case of CoNCN and finally (iii) a combined conversion and alloying mechanism in the case of Pb, Zn and Ag compounds. It is worth noting that whatever the reaction pathway, all the carbodiimide/cyanamide anode materials face the limitation of a significantly low coulombic efficiency during the first cycles. To overcome this obstacle, much effort is needed to clarify the nature and the role of SEI in the overall performance of this family of materials. The promising results reported in this work do not probably yet meet the standards needed to take carbodiimides/cyanamides into the practical applications, but they clearly evidence the rich possibilities offered by this young family of molecular inorganic materials.Les batteries Li-ion constituent actuellement la technologie de choix pour tous les Ă©quipements portables, les moyens de transports Ă©lectriques et le stockage stationnaire des Ă©nergies renouvelables. Actuellement, le graphite est incontestablement le matĂ©riau d'anode le plus utilisĂ© pour les batteries Li-ion en raison de ses excellentes propriĂ©tĂ©s telles que sa durabilitĂ©, son abondance et son faible coĂ»t. Cependant, sa faible densitĂ© d'Ă©nergie est son talon d'Achille. En plus, le graphite prĂ©sente certains problĂšmes de sĂ©curitĂ©, en particulier Ă des puissances Ă©levĂ©es. En consĂ©quence, dâautres matĂ©riaux sĂ»rs, Ă©conomiques, Ă haute densitĂ© Ă©nergĂ©tique et Ă longue durĂ©e de vie, font lâobjet dâimportants travaux de recherche notamment des candidats comme le silicium et lâĂ©tain. Depuis 2015, la possibilitĂ© d'utiliser des carbodiimides de mĂ©taux de a Ă©tĂ© rapportĂ©e, et certains d'entre eux ont montrĂ© des performances Ă©lectrochimiques prometteuses en tant que matĂ©riaux anodiques pour les batteries aux ions Li et Na. Comme tous les matĂ©riaux d'Ă©lectrode Ă base de mĂ©taux divalents, les carbodiimides souffrent d'une capacitĂ© irrĂ©versible initiale et d'un potentiel de fonctionnement Ă©levĂ©s, mais prĂ©sentent une meilleure tenue en cyclage. L'application de carbodiimides de mĂ©taux de transition dans le domaine du stockage (et de la conversion) de l'Ă©nergie en est encore Ă ses dĂ©buts malgrĂ© les progrĂšs rĂ©alisĂ©s en terme d'Ă©valuation Ă©lectrochimique. Il reste encore beaucoup Ă faire pour Ă©tablir les mĂ©canismes rĂ©actionnels qui rĂ©gissent les performances prometteuses observĂ©es. Outre les carbodiimides de mĂ©taux de transition, il reste encore de nombreux carbodiimides inorganiques Ă explorer. Par consĂ©quent, les principaux objectifs de cette thĂšse sont (i) dâĂ©valuer la possibilitĂ© dâapplication de nouveaux carbodiimides comme matĂ©riaux dâĂ©lectrode pour les batteries Li-ion et (ii) dâĂ©tablir les mĂ©canismes rĂ©actionnels Ă©lectrochimique de ces matĂ©riaux au moyen de techniques de caractĂ©risation operando avancĂ©es couplĂ©es Ă des calculs DFT. En ce qui concerne les performances Ă©lectrochimiques, Cr2(NCN)3 s'est rĂ©vĂ©lĂ© ĂȘtre le meilleur matĂ©riau d'anode, avec une capacitĂ© spĂ©cifique stable de plus de 600 mAh.g-1 sur plus de 900 cycles Ă un rĂ©gime de 2C. CoNCN et FeNCN ont Ă©galement dâexcellentes propriĂ©tĂ©s Ă©lectrochimiques, car ils peuvent maintenir une capacitĂ© spĂ©cifique supĂ©rieure Ă 500 mAh.g-1 pendant plus de 100 cycles Ă un rĂ©gime de 2C. Des performances plus modestes ont Ă©tĂ© observĂ©es pour PbNCN, Ag2NCN et ZnNCN car les capacitĂ©s pratiques sont bien infĂ©rieures aux capacitĂ©s thĂ©oriques. Ces phases montrent Ă©galement une chute de la capacitĂ© sur les premiers 20 cycles. Ces trois catĂ©gories de performances sont bien corrĂ©lĂ©es avec les trois mĂ©canismes diffĂ©rents rĂ©actionnels Ă©tablis pour toutes les phases Ă©tudiĂ©es. Jusqu'Ă prĂ©sent, trois types de mĂ©canismes rĂ©actionnels ont Ă©tĂ© identifiĂ©s, Ă savoir (i) un processus combinant une Ă©tape dâintercalation suivie dâune Ă©tape de conversion dans le cas de Cr2(NCN)3, (ii) une rĂ©action de conversion pure dans le cas de CoNCN et enfin (iii) un mĂ©canisme combinĂ© de conversion et dâalliage dans le cas des composĂ©s Pb, Zn et Ag. Il convient de noter que, quelle que soit le mĂ©canisme rĂ©actionnel, tous les matĂ©riaux d'anode carbodiimide sont confrontĂ©s Ă la limitation d'une faible efficacitĂ© coulombique au cours des premiers cycles. Pour surmonter cet obstacle, il faut dĂ©ployer plus d'efforts pour clarifier la nature et le rĂŽle de la SEI dans la performance globale de cette famille de matĂ©riaux. Bien que les rĂ©sultats prometteurs prĂ©sentĂ©s dans ce travail ne rĂ©pondent probablement pas aux normes requises pour intĂ©grer les carbodiimides dans des applications commerciales, ils ont au moins le mĂ©rite de montrer la richesse de la chimie des carbodiimides et de stimuler davantage de travaux de recherche sur cette famille de matĂ©riaux inorganiques molĂ©culaires relativement jeune
QuantumâChemical Study of the FeNCN ConversionâReaction Mechanism in Lithiumâ and SodiumâIon Batteries
International audienceWe report a computational study on 3d transitionâmetal (Cr, Mn, Fe, and Co) carbodiimides in Liâ and Naâion batteries. The obtained cell voltages semiâquantitatively fit the experiments, highlighting the practicality of PBE+U as an approach for modeling the conversionâreaction mechanism of the FeNCN archetype with lithium and sodium. Also, the calculated voltage profiles agree satisfactorily with experiment both for full (Liâion battery) and partial (Naâion battery) discharge, even though experimental atomistic knowledge is missing up to now. Moreover, we rationalize the structural preference of intermediate ternaries and their characteristic lowering in the voltage profile using chemicalâbonding and Mullikenâcharge analysis. The formation of such ternary intermediates for the lithiation of FeNCN and the contribution of at least one ternary intermediate is also confirmed experimentally. This theoretical approach, aided by experimental findings, supports the atomistic exploration of electrode materials governed by conversion reactions
Reversible High Capacity and Reaction Mechanism of Cr 2 (NCN) 3 Negative Electrodes for LiâIon Batteries
International audienceA detailed study of the electrochemical reaction mechanism between lithium and the trivalent transition-metal carbodiimide Cr2(NCN)3, which shows excellent performance as a negative electrode material in Li-ion batteries, is conducted combining complementary operando analyses and state-of-the-art density functional theory (DFT) calculations. As predicted by DFT, and evidenced by operando X-ray diffraction and Cr K-edge absorption spectroscopy, a two-step reaction pathway involving two redox couples (Cr3ĂŸ/Cr2ĂŸ and Cr2ĂŸ/Cr0) and a concomitant formation of Cr metal nanoparticles is apparent, thus indicating that the conversion reaction of this carbodiimide upon lithiation occurs only after a preliminary intercalation step involving two Li per unit formula. This mechanism, evidenced for the first time in transition-metal carbodiimides, is likely behind its outstanding electrochemical performance as Cr2(NCN)3 can maintain more than 600 mAh g1 for 900 cycles at a high rate of 2 C
Cobalt Carbodiimide as Negative Electrode for LiâIon Batteries: Electrochemical Mechanism and Performance
International audienceCobalt carbodiimide, CoNCN, shows outstanding performance as negative electrode material for Liâion batteries, maintaining a reversible capacity of 530âmAhâgâ1 over 140â
cycles at a current density of 540â
mAâgâ1. The electrochemical lithiation/delithiation mechanism of cobalt carbodiimide was investigated using complementary inâ
situ Xâray diffraction and Xâray absorption spectroscopy. Upon lithiation, CoNCN undergoes a reversible conversion reaction, forming Li2NCN and fcc Co metal nanoparticles, which are transformed back into CoNCN upon delithiation. However, the CoNCN obtained electrochemically after delithiation do not recover the local structure of the pristine phase, and might contain the NCN2â ligand in the cyanamide isomer form (NâCâĄN2â). It would be the first time that a transition metal cyanamide isomer is obtained at ambient conditions