430 research outputs found
Design study and evaluation of a hypergolic engine for a space power system, phase 2 Final report, 1 Jul. 1964 - 10 Feb. 1966
Design feasibility of hypergolic engine for space power syste
Design study and evaluation of a multifuel engine for a space power system final report, 19 apr. - 4 jun. 1965
Evaluation testing of modified hypergolic ignition engine operating on gaseous hydrogen and oxyge
Adaptive Optical Phase Estimation Using Time-Symmetric Quantum Smoothing
Quantum parameter estimation has many applications, from gravitational wave
detection to quantum key distribution. We present the first experimental
demonstration of the time-symmetric technique of quantum smoothing. We consider
both adaptive and non-adaptive quantum smoothing, and show that both are better
than their well-known time-asymmetric counterparts (quantum filtering). For the
problem of estimating a stochastically varying phase shift on a coherent beam,
our theory predicts that adaptive quantum smoothing (the best scheme) gives an
estimate with a mean-square error up to times smaller than that
from non-adaptive quantum filtering (the standard quantum limit). The
experimentally measured improvement is
Generation of 3D Skin Equivalents Fully Reconstituted from Human Induced Pluripotent Stem Cells (iPSCs)
Recent generation of patient-specific induced pluripotent stem cells (PS-iPSCs) provides significant advantages for cell- and gene-based therapy. Establishment of iPSC-based therapy for skin diseases requires efficient methodology for differentiating iPSCs into both keratinocytes and fibroblasts, the major cellular components of the skin, as well as the reconstruction of skin structures using these iPSC-derived skin components. We previously reported generation of keratinocytes from human iPSCs for use in the treatment of recessive dystrophic epidermolysis bullosa (RDEB) caused by mutations in the COL7A1 gene. Here, we developed a protocol for differentiating iPSCs into dermal fibroblasts, which also produce type VII collagen and therefore also have the potential to treat RDEB. Moreover, we generated in vitro 3D skin equivalents composed exclusively human iPSC-derived keratinocytes and fibroblasts for disease models and regenerative therapies for skin diseases, first demonstrating that iPSCs can provide the basis for modeling a human organ derived entirely from two different types of iPSC-derived cells
National Performance Benchmarks for Modern Screening Digital Mammography: Update from the Breast Cancer Surveillance Consortium
Purpose To establish performance benchmarks for modern screening digital mammography and assess performance trends over time in U.S. community practice. Materials and Methods This HIPAA-compliant, institutional review board-approved study measured the performance of digital screening mammography interpreted by 359 radiologists across 95 facilities in six Breast Cancer Surveillance Consortium (BCSC) registries. The study included 1 682 504 digital screening mammograms performed between 2007 and 2013 in 792 808 women. Performance measures were calculated according to the American College of Radiology Breast Imaging Reporting and Data System, 5th edition, and were compared with published benchmarks by the BCSC, the National Mammography Database, and performance recommendations by expert opinion. Benchmarks were derived from the distribution of performance metrics across radiologists and were presented as 50th (median), 10th, 25th, 75th, and 90th percentiles, with graphic presentations using smoothed curves. Results Mean screening performance measures were as follows: abnormal interpretation rate (AIR), 11.6 (95% confidence interval [CI]: 11.5, 11.6); cancers detected per 1000 screens, or cancer detection rate (CDR), 5.1 (95% CI: 5.0, 5.2); sensitivity, 86.9% (95% CI: 86.3%, 87.6%); specificity, 88.9% (95% CI: 88.8%, 88.9%); false-negative rate per 1000 screens, 0.8 (95% CI: 0.7, 0.8); positive predictive value (PPV) 1, 4.4% (95% CI: 4.3%, 4.5%); PPV2, 25.6% (95% CI: 25.1%, 26.1%); PPV3, 28.6% (95% CI: 28.0%, 29.3%); cancers stage 0 or 1, 76.9%; minimal cancers, 57.7%; and node-negative invasive cancers, 79.4%. Recommended CDRs were achieved by 92.1% of radiologists in community practice, and 97.1% achieved recommended ranges for sensitivity. Only 59.0% of radiologists achieved recommended AIRs, and only 63.0% achieved recommended levels of specificity. Conclusion The majority of radiologists in the BCSC surpass cancer detection recommendations for screening mammography; however, AIRs continue to be higher than the recommended rate for almost half of radiologists interpreting screening mammograms. © RSNA, 2016 Online supplemental material is available for this article
G-type antiferromagnetism and orbital ordering due to the crystal field from the rare-earth ions induced by the GdFeO_3-type distortion in RTiO_3 with R=La, Pr, Nd and Sm
The origin of the antiferromagnetic order and puzzling properties of LaTiO_3
as well as the magnetic phase diagram of the perovskite titanates are studied
theoretically. We show that in LaTiO_3, the t_{2g} degeneracy is eventually
lifted by the La cations in the GdFeO_3-type structure, which generates a
crystal field with nearly trigonal symmetry. This allows the description of the
low-energy structure of LaTiO_3 by a single-band Hubbard model as a good
starting point. The lowest-orbital occupation in this crystal field stabilizes
the AFM(G) state, and well explains the spin-wave spectrum of LaTiO_3 obtained
by the neutron scattering experiment. The orbital-spin structures for RTiO_3
with R=Pr, Nd and Sm are also accounted for by the same mechanism. We point out
that through generating the R crystal field, the GdFeO_3-type distortion has a
universal relevance in determining the orbital-spin structure of the perovskite
compounds in competition with the Jahn-Teller mechanism, which has been
overlooked in the literature. Since the GdFeO_3-type distortion is a universal
phenomenon as is seen in a large number of perovskite compounds, this mechanism
may also play important roles in other compounds of this type.Comment: 20 pages, 15 figure
Overexpression of piRNA pathway genes in epithelial ovarian cancer
The importance of the Piwi-interacting RNA (piRNA) pathway for germ cell maintenance, genome integrity, DNA methylation and retrotransposon control raises possible roles of this pathway in cancer. Indeed aberrant expression of human PIWI orthologs and Maelstrom has been observed in various cancers. In this study we explored the expression and function of piRNA pathway genes in human ovarian cancer, based on our recent work, which showed widespread expression of piRNA pathway genes in the mammalian. Our work shows that PIWIL1 and MAEL expression is significantly increased in malignant EOC (n = 25) compared to benign tumor tissues (n = 19) and normal ovarian tissue (n = 8). The expression of PIWIL3 is lower in malignant and benign tissues when compared to normal ovary. Sequencing of PIWIL1 transcript revealed that in many tumors deletion of exon 17 leads to the introduction of a premature stop codon in the PIWI domain, likely due to a splicing error. In situ hybridization on tumor sections revealed that L1, PIWIL1, 2 and MAEL are specifically expressed in epithelial cells (cancerous cells) of EOC. Furthermore, PIWIL2 and MAEL are co-expressed in the stromal cells adjacent to tumor cells. Since PIWIL1 and MAEL are up regulated in malignant EOC and expressed in the epithelial cells, we investigated if these two genes affect invasiveness of ovarian cancer cell lines that do not normally express these genes. PIWIL1 and MAEL were transiently over expressed in the ovarian cancer cell line SKOV3, followed by real-time measurements of cell invasiveness. Surprisingly both PIWIL1 and MAEL over expression decreased the invasiveness of SKOV3 cells. Our findings support a growing body of evidence that shows that genes in this pathway are upregulated in cancer. In ovarian cancer we show for the first time that Piwil1 transcript may often be abnormal result in non functional product. In contrast to what has been observed in other cell types, we found that PIWIL1 and MAEL have a repressive effect on cell invasiveness.Shu Ly Lim, Carmela Ricciardelli, Martin K. Oehler, Izza M. D. De Arao Tan, Darryl Russell, Frank Grützne
Students and academics working in partnership to embed cultural competence as a graduate quality
Since 2014, the University of Sydney has been experimenting with a new initiative motivated by the research on “students as partners”. In 2014, six students were selected as Ambassadors of the Sydney Teaching Colloquium (STC)-the University’s annual learning and teaching conference-as undergraduate researchers. In that year, the focus was on assessment standards
- …