27 research outputs found

    Priming of plant resistance by natural compounds. Hexanoic acid as a model

    Get PDF
    Some alternative control strategies of currently emerging plant diseases are based on the use of resistance inducers. This review highlights the recent advances made in the characterization of natural compounds that induce resistance by a priming mechanism. These include vitamins, chitosans, oligogalacturonides, volatile organic compounds, azelaic and pipecolic acid, among others. Overall, other than providing novel disease control strategies that meet environmental regulations, natural priming agents are valuable tools to help unravel the complex mechanisms underlying the induced resistance (IR) phenomenon. The data presented in this review reflect the novel contributions made from studying these natural plant inducers, with special emphasis placed on hexanoic acid (Hx), proposed herein as a model tool for this research field. Hx is a potent natural priming agent of proven efficiency in a wide range of host plants and pathogens. It can early activate broad-spectrum defenses by inducing callose deposition and the salicylic acid (SA) and jasmonic acid (JA) pathways. Later it can prime pathogen-specific responses according to the pathogen’s lifestyle. Interestingly, Hx primes redox-related genes to produce an anti-oxidant protective effect, which might be critical for limiting the infection of necrotrophs. Our Hx-IR findings also strongly suggest that it is an attractive tool for the molecular characterization of the plant alarmed state, with the added advantage of it being a natural compound.This work was supported by grants from the Spanish Ministry of Science and Innovation (AGL2010-22300-C03-01-02-03) co-funded by European Regional Development Fund (ERDF) and Generalitat Valenciana Grupos de Excelencia (PROMETEO/2012/066). Maria de la O Leyva and Ivan Finiti were recipients of a research contract from AGL2010-22300-C03-01. We thank the SCIE Greenhouse section at the University of Valencia and the SCIC at the Universitat Jaume I for technical support

    COVAD survey 2 long-term outcomes: unmet need and protocol

    Get PDF
    Vaccine hesitancy is considered a major barrier to achieving herd immunity against COVID-19. While multiple alternative and synergistic approaches including heterologous vaccination, booster doses, and antiviral drugs have been developed, equitable vaccine uptake remains the foremost strategy to manage pandemic. Although none of the currently approved vaccines are live-attenuated, several reports of disease flares, waning protection, and acute-onset syndromes have emerged as short-term adverse events after vaccination. Hence, scientific literature falls short when discussing potential long-term effects in vulnerable cohorts. The COVAD-2 survey follows on from the baseline COVAD-1 survey with the aim to collect patient-reported data on the long-term safety and tolerability of COVID-19 vaccines in immune modulation. The e-survey has been extensively pilot-tested and validated with translations into multiple languages. Anticipated results will help improve vaccination efforts and reduce the imminent risks of COVID-19 infection, especially in understudied vulnerable groups

    A new class of glycomimetic drugs to prevent free fatty acid-induced endothelial dysfunction

    Get PDF
    Background: Carbohydrates play a major role in cell signaling in many biological processes. We have developed a set of glycomimetic drugs that mimic the structure of carbohydrates and represent a novel source of therapeutics for endothelial dysfunction, a key initiating factor in cardiovascular complications. Purpose: Our objective was to determine the protective effects of small molecule glycomimetics against free fatty acid­induced endothelial dysfunction, focusing on nitric oxide (NO) and oxidative stress pathways. Methods: Four glycomimetics were synthesized by the stepwise transformation of 2,5­dihydroxybenzoic acid to a range of 2,5­substituted benzoic acid derivatives, incorporating the key sulfate groups to mimic the interactions of heparan sulfate. Endothelial function was assessed using acetylcholine­induced, endotheliumdependent relaxation in mouse thoracic aortic rings using wire myography. Human umbilical vein endothelial cell (HUVEC) behavior was evaluated in the presence or absence of the free fatty acid, palmitate, with or without glycomimetics (1µM). DAF­2 and H2DCF­DA assays were used to determine nitric oxide (NO) and reactive oxygen species (ROS) production, respectively. Lipid peroxidation colorimetric and antioxidant enzyme activity assays were also carried out. RT­PCR and western blotting were utilized to measure Akt, eNOS, Nrf­2, NQO­1 and HO­1 expression. Results: Ex vivo endothelium­dependent relaxation was significantly improved by the glycomimetics under palmitate­induced oxidative stress. In vitro studies showed that the glycomimetics protected HUVECs against the palmitate­induced oxidative stress and enhanced NO production. We demonstrate that the protective effects of pre­incubation with glycomimetics occurred via upregulation of Akt/eNOS signaling, activation of the Nrf2/ARE pathway, and suppression of ROS­induced lipid peroxidation. Conclusion: We have developed a novel set of small molecule glycomimetics that protect against free fatty acidinduced endothelial dysfunction and thus, represent a new category of therapeutic drugs to target endothelial damage, the first line of defense against cardiovascular disease

    The use of Avitenes (MCH) in dental socket

    No full text

    Priming of plant resistance by natural compounds. Hexanoic acid as a model

    Get PDF
    Some alternative control strategies of currently emerging plant diseases are based on the use of resistance inducers. This review highlights the recent advances made in the characterization of natural compounds that induce resistance by a priming mechanism. These include vitamins, chitosans, oligogalacturonides, volatile organic compounds, azelaic and pipecolic acid, among others. Overall, other than providing novel disease control strategies that meet environmental regulations, natural priming agents are valuable tools to help unravel the complex mechanisms underlying the induced resistance (IR) phenomenon. The data presented in this review reflect the novel contributions made from studying these natural plant inducers, with special emphasis placed on hexanoic acid (Hx), proposed herein as a model tool for this research field. Hx is a potent natural priming agent of proven efficiency in a wide range of host plants and pathogens. It can early activate broad-spectrum defenses by inducing callose deposition and the salicylic acid (SA) and jasmonic acid (JA) pathways. Later it can prime pathogen-specific responses according to the pathogen’s lifestyle. Interestingly, Hx primes redox-related genes to produce an anti-oxidant protective effect, which might be critical for limiting the infection of necrotrophs. Our Hx-IR findings also strongly suggest that it is an attractive tool for the molecular characterization of the plant alarmed state, with the added advantage of it being a natural compound.This work was supported by grants from the Spanish Ministry of Science and Innovation (AGL2010-22300-C03-01-02-03) co-funded by European Regional Development Fund (ERDF) and Generalitat Valenciana Grupos de Excelencia (PROMETEO/2012/066). Maria de la O Leyva and Ivan Finiti were recipients of a research contract from AGL2010-22300-C03-01.Peer reviewedPeer Reviewe

    The influences of sugar on surgical wounds repair in diabetic rats

    No full text
    corecore