86 research outputs found

    Pós-colheita do melão amarelo Goldex cultivado sob adubação verde e plantio direto com diferentes coberturas.

    Get PDF
    O melão amarelo é o mais cultivado na região Nordeste, maior produtora de melão do Brasil. Estudos têm sido realizados utilizando-se coberturas vegetais, que beneficiam o solo e melhoram a qualidade dos frutos, o que pode resultar em maior manutenção da qualidade pós-colheita. Melão amarelo ?Goldex? foi cultivado em duas safras, sob adubação verde e plantio direto com diferentes coberturas e a qualidade dos frutos avaliada com relação à aparência externa, perda de massa, firmeza, sólidos solúveis e açúcares totais na época da colheita e ao final de 28 dias de armazenamento (22 dias a 11 ºC e 85 a 90% de U.R mais 6 dias a 20 ºC e 85 a 90% de U.R). Não houve alterações com relação à aparência, firmeza e perda de massa. Sólidos solúveis e açúcares totais foram melhor preservados nos frutos do sistema com adubação verde, com maiores teores naqueles provenientes da adubação verde utilizando crotalária e crotalária mais milheto, associados ao mulching plástico. O uso combinado do sistema por adubação verde com estas coberturas pode ser uma alternativa na produção de melões "Goldex" no polo de produção Ceará/ Rio Grande do Norte

    Land use still matters after deforestation

    Get PDF
    Careful management of deforested Amazonian land cannot replace, but must complement, efforts to preserve the rainforest. Sustainable agricultural practices that promote diverse uses can help minimise climate and environmental impacts.Peer reviewe

    The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective

    Get PDF
    Why do forest productivity and biomass decline with elevation? To address this question, research to date generally has focused on correlative approaches describing changes in woody growth and biomass with elevation. We present a novel, mechanistic approach to this question by quantifying the autotrophic carbon budget in 16 forest plots along a 3300 m elevation transect in Peru. Low growth rates at high elevations appear primarily driven by low gross primary productivity (GPP), with little shift in either carbon use efficiency (CUE) or allocation of net primary productivity (NPP) between wood, fine roots and canopy. The lack of trend in CUE implies that the proportion of photosynthate allocated to autotrophic respiration is not sensitive to temperature. Rather than a gradual linear decline in productivity, there is some limited but nonconclusive evidence of a sharp transition in NPP between submontane and montane forests, which may be caused by cloud immersion effects within the cloud forest zone. Leaf-level photosynthetic parameters do not decline with elevation, implying that nutrient limitation does not restrict photosynthesis at high elevations. Our data demonstrate the potential of whole carbon budget perspectives to provide a deeper understanding of controls on ecosystem functioning and carbon cycling

    A social and ecological assessment of tropical land uses at multiple scales: the Sustainable amazon network

    Get PDF
    Science has a critical role to play in guiding more sustainable development trajectories. Here, we present the Sustainable Amazon Network (Rede Amazônia Sustentável, RAS): a multidisciplinary research initiative involving more than 30 partner organizations working to assess both social and ecological dimensions of land-use sustainability in eastern Brazilian Amazonia. The research approach adopted by RAS offers three advantages for addressing land-use sustainability problems: (i) the collection of synchronized and co-located ecological and socioeconomic data across broad gradients of past and present human use; (ii) a nested sampling design to aid comparison of ecological and socioeconomic conditions associated with different land uses across local, landscape and regional scales; and (iii) a strong engagement with a wide variety of actors and non-research institutions. Here, we elaborate on these key features, and identify the ways in which RAS can help in highlighting those problems in most urgent need of attention, and in guiding improvements in land-use sustainability in Amazonia and elsewhere in the tropics. We also discuss some of the practical lessons, limitations and realities faced during the development of the RAS initiative so far

    Tree mode of death and mortality risk factors across Amazon forests

    Get PDF
    The carbon sink capacity of tropical forests is substantially affected by tree mortality. However, the main drivers of tropical tree death remain largely unknown. Here we present a pan-Amazonian assessment of how and why trees die, analysing over 120,000 trees representing > 3800 species from 189 long-term RAINFOR forest plots. While tree mortality rates vary greatly Amazon-wide, on average trees are as likely to die standing as they are broken or uprooted—modes of death with different ecological consequences. Species-level growth rate is the single most important predictor of tree death in Amazonia, with faster-growing species being at higher risk. Within species, however, the slowest-growing trees are at greatest risk while the effect of tree size varies across the basin. In the driest Amazonian region species-level bioclimatic distributional patterns also predict the risk of death, suggesting that these forests are experiencing climatic conditions beyond their adaptative limits. These results provide not only a holistic pan-Amazonian picture of tree death but large-scale evidence for the overarching importance of the growth–survival trade-off in driving tropical tree mortality

    Drought-induced Amazonian wildfires instigate a decadal-scale disruption of forest carbon dynamics

    Get PDF
    Drought-induced wildfires have increased in frequency and extent over the tropics. Yet, the long-term (greater than 10 years) responses of Amazonian lowland forests to fire disturbance are poorly known. To understand post-fire forest biomass dynamics, and to assess the time required for fire-affected forests to recover to pre-disturbance levels, we combined 16 single with 182 multiple forest census into a unique large-scale and long-term dataset across the Brazilian Amazonia. We quantified biomass, mortality and wood productivity of burned plots along a chronosequence of up to 31 years post-fire and compared to surrounding unburned plots measured simultaneously. Stem mortality and growth were assessed among functional groups. At the plot level, we found that fire-affected forests have biomass levels 24.8 ± 6.9% below the biomass value of unburned control plots after 31 years. This lower biomass state results from the elevated levels of biomass loss through mortality, which is not sufficiently compensated for by wood productivity (incremental growth + recruitment). At the stem level, we found major changes in mortality and growth rates up to 11 years post-fire. The post-fire stem mortality rates exceeded unburned control plots by 680% (i.e. greater than 40 cm diameter at breast height (DBH); 5–8 years since last fire) and 315% (i.e. greater than 0.7 g cm−3 wood density; 0.75–4 years since last fire). Our findings indicate that wildfires in humid tropical forests can significantly reduce forest biomass for decades by enhancing mortality rates of all trees, including large and high wood density trees, which store the largest amount of biomass in old-growth forests. This assessment of stem dynamics, therefore, demonstrates that wildfires slow down or stall the post-fire recovery of Amazonian forests. This article is part of a discussion meeting issue ‘The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications’

    Direct evidence for phosphorus limitation on Amazon forest productivity

    Get PDF
    The productivity of rainforests growing on highly weathered tropical soils is expected to be limited by phosphorus availability1. Yet, controlled fertilization experiments have been unable to demonstrate a dominant role for phosphorus in controlling tropical forest net primary productivity. Recent syntheses have demonstrated that responses to nitrogen addition are as large as to phosphorus2, and adaptations to low phosphorus availability appear to enable net primary productivity to be maintained across major soil phosphorus gradients3. Thus, the extent to which phosphorus availability limits tropical forest productivity is highly uncertain. The majority of the Amazonia, however, is characterized by soils that are more depleted in phosphorus than those in which most tropical fertilization experiments have taken place2. Thus, we established a phosphorus, nitrogen and base cation addition experiment in an old growth Amazon rainforest, with a low soil phosphorus content that is representative of approximately 60% of the Amazon basin. Here we show that net primary productivity increased exclusively with phosphorus addition. After 2 years, strong responses were observed in fine root (+29%) and canopy productivity (+19%), but not stem growth. The direct evidence of phosphorus limitation of net primary productivity suggests that phosphorus availability may restrict Amazon forest responses to CO2 fertilization4, with major implications for future carbon sequestration and forest resilience to climate change.The authors acknowledge funding from the UK Natural Environment Research Council (NERC), grant number NE/L007223/1. This is publication 850 in the technical series of the BDFFP. C.A.Q. acknowledges the grants from Brazilian National Council for Scientific and Technological Development (CNPq) CNPq/LBA 68/2013, CNPq/MCTI/FNDCT no. 18/2021 and his productivity grant. C.A.Q., H.F.V.C., F.D.S., I.A., L.F.L., E.O.M. and S.G. acknowledge the AmazonFACE programme for financial support in cooperation with Coordination for the Improvement of Higher Education Personnel (CAPES) and the National Institute of Amazonian Research as part of the grants CAPES-INPA/88887.154643/2017-00 and 88881.154644/2017-01. T.F.D. acknowledges funds from FundacAo de Amparo a Pesquisa do Estado de SAo Paulo (FAPESP), grant 2015/50488-5, and the Partnership for Enhanced Engagement in Research (PEER) programme grant AID-OAA-A-11-00012. L.E.O.C.A. thanks CNPq (314416/2020-0)
    corecore