247 research outputs found
A Real-Time Time-Dependent Density Functional Tight-Binding Implementation for Semiclassical Excited State ElectronâNuclear Dynamics and PumpâProbe Spectroscopy Simulations
The increasing need to simulate the dynamics of photoexcited molecular systems and nanosystems in the subpicosecond regime demands new efficient tools able to describe the quantum nature of matter at a low computational cost. By combining the power of the approximate DFTB method with the semiclassical Ehrenfest method for nuclearâelectron dynamics, we have achieved a real-time time-dependent DFTB (TD-DFTB) implementation that fits such requirements. In addition to enabling the study of nuclear motion effects in photoinduced charge transfer processes, our code adds novel features to the realm of static and time-resolved computational spectroscopies. In particular, the optical properties of periodic materials such as graphene nanoribbons or the use of corrections such as the âLDA+Uâ and âpseudo SICâ methods to improve the optical properties in some systems can now be handled at the TD-DFTB level. Moreover, the simulation of fully atomistic time-resolved transient absorption spectra and impulsive vibrational spectra can now be achieved within reasonable computing time, owing to the good performance of the implementation and a parallel simulation protocol. Its application to the study of UV/visible light-induced vibrational coherences in molecules is demonstrated and opens a new door into the mechanisms of nonequilibrium ultrafast phenomena in countless materials with relevant applications
Dynamical evolution of the Schottky barrier as a determinant contribution to electronâhole pair stabilization and photocatalysis of plasmon-induced hot carriers
The harnessing of plasmon-induced hot carriers promises to open new avenues for the development of clean energies and chemical catalysis. The extraction of carriers before thermalization and recombination is of fundamental importance to obtain appealing conversion yields. Here, hot carrier injection in the paradigmatic Au-TiO2 system is studied by means of electronic and electron-ion dynamics. Our results show that pure electronic features (without considering many-body interactions or dissipation to the environment) contribute to the electronâhole separation stability. These results reveal the existence of a dynamic contribution to the interfacial potential barrier (Schottky barrier) that arises at the charge injection pace, impeding electronic back transfer. Furthermore, we show that this charge separation stabilization provides the time needed for the charge to leak to capping molecules placed over the TiO2 surface triggering a coherent bond oscillation that will lead to a photocatalytic dissociation. We expect that our results will add new perspectives to the interpretation of the already detected long-lived hot carrier lifetimes and their catalytical effect, and concomitantly to their technological applications
DFTB+, a software package for efficient approximate density functional theory based atomistic simulations
DFTB+ is a versatile community developed open source software package offering fast and efficient methods for carrying out atomistic quantum mechanical simulations. By implementing various methods approximating density functional theory (DFT), such as the density functional based tight binding (DFTB) and the extended tight binding method, it enables simulations of large systems and long timescales with reasonable accuracy while being considerably faster for typical simulations than the respective ab initio methods. Based on the DFTB framework, it additionally offers approximated versions of various DFT extensions including hybrid functionals, time dependent formalism for treating excited systems, electron transport using non-equilibrium Greenâs functions, and many more. DFTB+ can be used as a user-friendly standalone application in addition to being embedded into other software packages as a library or acting as a calculation-server accessed by socket communication. We give an overview of the recently developed capabilities of the DFTB+ code, demonstrating with a few use case examples, discuss the strengths and weaknesses of the various features, and also discuss on-going developments and possible future perspectives
Boron Nitride Monolayer: A Strain-Tunable Nanosensor
The influence of triaxial in-plane strain on the electronic properties of a
hexagonal boron-nitride sheet is investigated using density functional theory.
Different from graphene, the triaxial strain localizes the molecular orbitals
of the boron-nitride flake in its center depending on the direction of the
applied strain. The proposed technique for localizing the molecular orbitals
that are close to the Fermi level in the center of boron nitride flakes can be
used to actualize engineered nanosensors, for instance, to selectively detect
gas molecules. We show that the central part of the strained flake adsorbs
polar molecules more strongly as compared with an unstrained sheet.Comment: 20 pages, 9 figure
NMR investigations of the interaction between the azo-dye sunset yellow and Fluorophenol
The interaction of small molecules with larger noncovalent assemblies is important across a wide range of disciplines. Here, we apply two complementary NMR spectroscopic methods to investigate the interaction of various fluorophenol isomers with sunset yellow. This latter molecule is known to form noncovalent aggregates in isotropic solution, and form liquid crystals at high concentrations. We utilize the unique fluorine-19 nucleus of the fluorophenol as a reporter of the interactions via changes in both the observed chemical shift and diffusion coefficients. The data are interpreted in terms of the indefinite self-association model and simple modifications for the incorporation of a second species into an assembly. A change in association mode is tentatively assigned whereby the fluorophenol binds end-on with the sunset yellow aggregates at low concentration and inserts into the stacks at higher concentrations
A Nonzero Gap Two-Dimensional Carbon Allotrope from Porous Graphene
Graphene is considered one of the most promising materials for future
electronic. However, in its pristine form graphene is a gapless material, which
imposes limitations to its use in some electronic applications. In order to
solve this problem many approaches have been tried, such as, physical and
chemical functionalizations. These processes compromise some of the desirable
graphene properties. In this work, based on ab initio quantum molecular
dynamics, we showed that a two-dimensional carbon allotrope, named biphenylene
carbon (BPC) can be obtained from selective dehydrogenation of porous graphene.
BPC presents a nonzero bandgap and well-delocalized frontier orbitals.
Synthetic routes to BPC are also addressed.Comment: Published on J. Phys. Chem. C, 2012, 116 (23), pp 12810-1281
Atomistic simulations of self-trapped exciton formation in silicon nanostructures: The transition from quantum dots to nanowires
Using an approximate time-dependent density functional theory method, we
calculate the absorption and luminescence spectra for hydrogen passivated
silicon nanoscale structures with large aspect ratio. The effect of electron
confinement in axial and radial directions is systematically investigated.
Excited state relaxation leads to significant Stokes shifts for short nanorods
with lengths less than 2 nm, but has little effect on the luminescence
intensity. The formation of self-trapped excitons is likewise observed for
short nanostructures only; longer wires exhibit fully delocalized excitons with
neglible geometrical distortion at the excited state minimum.Comment: 10 pages, 4 figure
Metabolism of ticagrelor in patients with acute coronary syndromes.
© The Author(s) 2018Ticagrelor is a state-of-the-art antiplatelet agent used for the treatment of patients with acute coronary syndromes (ACS). Unlike remaining oral P2Y12 receptor inhibitors ticagrelor does not require metabolic activation to exert its antiplatelet action. Still, ticagrelor is extensively metabolized by hepatic CYP3A enzymes, and AR-C124910XX is its only active metabolite. A post hoc analysis of patient-level (nâ=â117) pharmacokinetic data pooled from two prospective studies was performed to identify clinical characteristics affecting the degree of AR-C124910XX formation during the first six hours after 180âmg ticagrelor loading dose in the setting of ACS. Both linear and multiple regression analyses indicated that ACS patients presenting with ST-elevation myocardial infarction or suffering from diabetes mellitus are more likely to have decreased rate of ticagrelor metabolism during the acute phase of ACS. Administration of morphine during ACS was found to negatively influence transformation of ticagrelor into AR-C124910XX when assessed with linear regression analysis, but not with multiple regression analysis. On the other hand, smoking appears to increase the degree of ticagrelor transformation in ACS patients. Mechanisms underlying our findings and their clinical significance warrant further research.Peer reviewedFinal Published versio
Isometries, submetries and distance coordinates on Finsler manifolds
This paper considers fundamental issues related to Finslerian iso-
metries, submetries, distance and geodesics. It is shown that at each
point of a Finsler manifold there is a distance coordinate system. Us-
ing distance coordinates, a simple proof is given for the Finslerian
version of the Myers-Steenrod theorem and for the differentiability of
Finslerian submetries
International Expert Consensus on Switching Platelet P2Y(12) Receptor-Inhibiting Therapies
Dual antiplatelet therapy with aspirin and a P2Y(12) inhibitor is the treatment of choice for the prevention of atherothrombotic events in patients with acute coronary syndromes and for those undergoing percutaneous coronary interventions. The availability of different oral P2Y(12) inhibitors (clopidogrel, prasugrel, ticagrelor) has enabled physicians to contemplate switching among therapies because of specific clinical scenarios. The recent introduction of an intravenous P2Y(12) inhibitor (cangrelor) further adds to the multitude of modalities and settings in which switching therapies may occur. In clinical practice, it is not uncommon to switch P2Y(12) inhibitor, and switching may be attributed to a variety of factors. However, concerns about the safety of switching between these agents have emerged. Practice guidelines have not fully elaborated on how to switch therapies, leaving clinicians with limited guidance on when and how to switch therapies when needed. This prompted the development of this expert consensus document by key leaders from North America and Europe with expertise in basic, translational, and clinical sciences in the field of antiplatelet therapy. This expert consensus provides an overview of the pharmacology of P2Y(12) inhibitors, different modalities and definitions of switching, and available literature and recommendations for switching between P2Y(12) inhibitors
- âŠ