662 research outputs found

    Diffusion in randomly perturbed dissipative dynamics

    Get PDF
    Dynamical systems having many coexisting attractors present interesting properties from both fundamental theoretical and modelling points of view. When such dynamics is under bounded random perturbations, the basins of attraction are no longer invariant and there is the possibility of transport among them. Here we introduce a basic theoretical setting which enables us to study this hopping process from the perspective of anomalous transport using the concept of a random dynamical system with holes. We apply it to a simple model by investigating the role of hyperbolicity for the transport among basins. We show numerically that our system exhibits non-Gaussian position distributions, power-law escape times, and subdiffusion. Our simulation results are reproduced consistently from stochastic continuous time random walk theory

    Direct numerical simulations of a high-pressure turbine vane

    Get PDF
    In this paper, we establish a benchmark data set of a generic high-pressure (HP) turbine vane generated by direct numerical simulation (DNS) to resolve fully the flow. The test conditions for this case are a Reynolds number of 0.57 × 106 and an exit Mach number of 0.9, which is representative of a modern transonic HP turbine vane. In this study, we first compare the simulation results with previously published experimental data. We then investigate how turbulence affects the surface flow physics and heat transfer. An analysis of the development of loss through the vane passage is also performed. The results indicate that freestream turbulence tends to induce streaks within the near-wall flow, which augment the surface heat transfer. Turbulent breakdown is observed over the late suction surface, and this occurs via the growth of two-dimensional Kelvin–Helmholtz spanwise roll-ups, which then develop into lambda vortices creating large local peaks in the surface heat transfer. Turbulent dissipation is found to significantly increase losses within the trailing-edge region of the vane.Partnership for Advanced Computing in Europe (PRACE) and the UK Turbulence Consortium funded by the EPSRC under Grant No. EP/L000261/

    Strong quantum fluctuation of vortices in the new superconductor MgB2MgB_2

    Full text link
    By using transport and magnetic measurement, the upper critical field Hc2(T)H_{c2}(T) and the irreversibility line Hirr(T)H_{irr}(T) has been determined. A big separation between Hc2(0)H_{c2}(0) and Hirr(0)H_{irr}(0) has been found showing the existence of a quantum vortex liquid state induced by quantum fluctuation of vortices in the new superconductor MgB2MgB_2. Further investigation on the magnetic relaxation shows that both the quantum tunneling and the thermally activated flux creep weakly depends on temperature. But when the melting field HirrH_{irr} is approached, a drastic rising of the relaxation rate is observed. This may imply that the melting of the vortex matter at a finite temperature is also induced by the quantum fluctuation of vortices.Comment: 4 pages, 4 figure

    The impact of lean practices on operational performance - an empirical investigation of Indian process industries

    Get PDF
    In deciding to adopt lean manufacturing, it is imperative to investigate where and how lean practices are most needed to influence manufacturing and business performance. Such an investigation becomes indispensable when lean thinking is to be considered in a production arrangement different to the conventional, repetitive, high-volume, stable-demand and discrete-manufacturing environment. This study provides explanations of how performance is improved through the adoption of lean practices in process industries. This is a relatively under-researched area compared to the performance effects associated with the introduction and implementation of lean principles in traditional, discrete manufacturing. Based on a survey of Indian process industries, this study attempts to develop an empirical relationship between lean practices and performance improvement through the use of multivariate statistical analysis. The findings have led to the conclusion that lean practices are positively associated with timely deliveries, productivity, first-pass yield, elimination of waste, reduction in inventory, reduction in costs, reduction in defects and improved demand management. However, within a process-industry context, lean practices related to pull production were found to have a marginal impact on performance improvement. A detailed discussion of the findings along with their theoretical and managerial implications is provided in the paper

    Antiphospholipid antibodies and heart failure with preserved ejection fraction. The multicenter athero-aps study

    Get PDF
    Background. The prevalence of heart failure with preserved ejection fraction (HFpEF) in patients with antiphospholipid syndrome (APS) is unknown. Methods. A prospective multicenter cohort study including 125 patients was conducted: 91 primary APS (PAPS), 18 APS-SLE, and 16 carriers. HFpEF was diagnosed according to the 2019 European Society of Cardiology criteria: patients with ≥5 points among major and minor functional and morphological criteria including NT-ProBNP > 220 pg/mL, left atrial (LA) enlargement, increased left ventricular filling pressure. Results. Overall, 18 (14.4%) patients were diagnosed with HFpEF; this prevalence increased from 6.3% in carriers to 13.2% in PAPS and 27.8% in APS-SLE. Patients with HFpEF were older and with a higher prevalence of hypertension and previous arterial events. At logistic regression analysis, age, arterial hypertension, anticardiolipin antibodies IgG > 40 GPL (odds ratio (OR) 3.43, 95% confidence interval (CI) 1.09–10.77, p = 0.035), anti β-2-glycoprotein-I IgG > 40 GPL (OR 5.28, 1.53– 18.27, p = 0.009), lupus anticoagulants DRVVT > 1.25 (OR 5.20, 95% CI 1.10–24.68, p = 0.038), and triple positivity (OR 3.56, 95% CI 1.11–11.47, p = 0.033) were associated with HFpEF after adjustment for age and sex. By multivariate analysis, hypertension (OR 19.49, 95% CI 2.21–171.94, p = 0.008), age (OR 1.07, 95% CI 1.00–1.14, p = 0.044), and aβ2GPI IgG > 40 GPL (OR 8.62, 95% CI 1.23–60.44, p = 0.030) were associated with HFpEF. Conclusion. HFpEF is detectable in a relevant proportion of APS patients. The role of aPL in the pathogenesis and prognosis of HFpEF needs further investigation.publishersversionpublishe

    Environmentally assisted cracking in light water reactors. Semiannual report, July 1998-December 1998.

    Get PDF
    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors from July 1998 to December 1998. Topics that have been investigated include (a) environmental effects on fatigue S-N behavior of primary pressure boundary materials, (b) irradiation-assisted stress corrosion cracking of austenitic stainless steels (SSs), and (c) EAC of Alloys 600 and 690. Fatigue tests have been conducted to determine the crack initiation and crack growth characteristics of austenitic SSs in LWR environments. Procedures are presented for incorporating the effects of reactor coolant environments on the fatigue life of pressure vessel and piping steels. Slow-strain-rate tensile tests and posttest fractographic analyses were conducted on several model SS alloys irradiated to {approx}0.3 and 0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) in helium at 289 C in the Halden reactor. The results have been used to determine the influence of alloying and impurity elements on the susceptibility of these steels to irradiation-assisted stress corrosion cracking. Fracture toughness J-R curve tests were also conducted on two heats of Type 304 SS that were irradiated to {approx}0.3 x 10{sup 21} n {center_dot} cm{sup -2} in the Halden reactor. Crack-growth-rate tests have been conducted on compact-tension specimens of Alloys 600 and 690 under constant load to evaluate the resistance of these alloys to stress corrosion cracking in LWR environments

    Charmed meson decay constants in three-flavor lattice QCD

    Full text link
    We present the first lattice QCD calculation with realistic sea quark content of the D^+ meson decay constant f_{D^+}. We use the MILC Collaboration's publicly available ensembles of lattice gauge fields, which have a quark sea with two flavors (up and down) much lighter than a third (strange). We obtain f_{D^+} = 201 +/- 3 +/- 17 MeV, where the errors are statistical and a combination of systematic errors. We also obtain f_{D_s} = 249 +/- 3 +/- 16 MeV for the D_s meson.Comment: note added on recent CLEO measurement; PRL versio

    Towards constraints on the SUSY seesaw from flavour-dependent leptogenesis

    Get PDF
    We systematically investigate constraints on the parameters of the supersymmetric type-I seesaw mechanism from the requirement of successful thermal leptogenesis in the presence of upper bounds on the reheat temperature TRHT_\mathrm{RH} of the early Universe. To this end, we solve the flavour-dependent Boltzmann equations in the MSSM, extended to include reheating. With conservative bounds on TRHT_\mathrm{RH}, leading to mildly constrained scenarios for thermal leptogenesis, compatibility with observation can be obtained for extensive new regions of the parameter space, due to flavour-dependent effects. On the other hand, focusing on (normal) hierarchical light and heavy neutrinos, the hypothesis that there is no CP violation associated with the right-handed neutrino sector, and that leptogenesis exclusively arises from the CP-violating phases of the UMNSU_\text{MNS} matrix, is only marginally consistent. Taking into account stricter bounds on TRHT_\mathrm{RH} further suggests that (additional) sources of CP violation must arise from the right-handed neutrino sector, further implying stronger constraints for the right-handed neutrino parameters.Comment: 42 pages, 12 figures; final version published in JCAP; numerical results for the efficiency factor can be downloaded from http://www.newphysics.eu/leptogenesis

    Soil methane sink capacity response to a long-term wildfire chronosequence in Northern Sweden

    Get PDF
    Boreal forests occupy nearly one fifth of the terrestrial land surface and are recognised as globally important regulators of carbon (C) cycling and greenhouse gas emissions. Carbon sequestration processes in these forests include assimilation of CO2 into biomass and subsequently into soil organic matter, and soil microbial oxidation of methane (CH4). In this study we explored how ecosystem retrogression, which drives vegetation change, regulates the important process of soil CH4 oxidation in boreal forests. We measured soil CH4 oxidation processes on a group of 30 forested islands in northern Sweden differing greatly in fire history, and collectively representing a retrogressive chronosequence, spanning 5000 years. Across these islands the build-up of soil organic matter was observed to increase with time since fire disturbance, with a significant correlation between greater humus depth and increased net soil CH4 oxidation rates. We suggest that this increase in net CH4 oxidation rates, in the absence of disturbance, results as deeper humus stores accumulate and provide niches for methanotrophs to thrive. By using this gradient we have discovered important regulatory controls on the stability of soil CH4 oxidation processes that could not have not been explored through shorter-term experiments. Our findings indicate that in the absence of human interventions such as fire suppression, and with increased wildfire frequency, the globally important boreal CH4 sink could be diminished
    • …
    corecore