Abstract

We systematically investigate constraints on the parameters of the supersymmetric type-I seesaw mechanism from the requirement of successful thermal leptogenesis in the presence of upper bounds on the reheat temperature TRHT_\mathrm{RH} of the early Universe. To this end, we solve the flavour-dependent Boltzmann equations in the MSSM, extended to include reheating. With conservative bounds on TRHT_\mathrm{RH}, leading to mildly constrained scenarios for thermal leptogenesis, compatibility with observation can be obtained for extensive new regions of the parameter space, due to flavour-dependent effects. On the other hand, focusing on (normal) hierarchical light and heavy neutrinos, the hypothesis that there is no CP violation associated with the right-handed neutrino sector, and that leptogenesis exclusively arises from the CP-violating phases of the UMNSU_\text{MNS} matrix, is only marginally consistent. Taking into account stricter bounds on TRHT_\mathrm{RH} further suggests that (additional) sources of CP violation must arise from the right-handed neutrino sector, further implying stronger constraints for the right-handed neutrino parameters.Comment: 42 pages, 12 figures; final version published in JCAP; numerical results for the efficiency factor can be downloaded from http://www.newphysics.eu/leptogenesis

    Similar works

    Available Versions

    Last time updated on 01/04/2019