316 research outputs found

    P02.185. The effects of tactile massage (TM) on blood pressure, heart rate and blood glucose in a sample of women suffering from primary insomnia

    Get PDF
    The overall objective of this pilot study was to study the direct effects of tactile massage (TM) on blood pressure, heart rate and blood glucose in a sample of women suffering from primary insomniaThe study had an experimental prospective design, with a total of 10 women (mean age; 53 years, ±5.4). The participants underwent TM twice a week for six weeks resulting in a total of 120 treatments. For short term effects, systolic and diastolic blood pressure, heartrate and blood glucoses were assessed by the therapist before and after each treatment. Long term assessments were made at baseline, at week 7, and at week 13.As a short term result after the treatment with TM, the participants reached a statistically significant reduction of; systolic blood pressure (-5.5 mmHg, ± 5.0), diastolic blood pressure (-2.0 mmHg, ± 4.4), Heartrate (-5.1 beats per minute, ± 3.4) and blood glucose (-0.2 mmol, ± 0.5). No long term effects with respect to the studied variables can be observed.In summary, we have shown in a normotensive but highly stressed sample of women, that TM has beneficiary effects on parameters of stress and cardiovascular function. In total, 120 TM treatments was analyzed with respect to the objective of the study, but in order to more understand the practical effects, and to more deeply evaluate TM’s place in the modalities of stress reduction, we recommend further studies with larger samples

    Endogenous cathelicidin production limits inflammation and protective immunity to Mycobacterium avium in mice

    Get PDF
    The production of antimicrobial peptides, such as the cathelicidins, plays a prominent role in the innate immune response against microbial pathogens. Cathelicidins are widely distributed amongst living organisms, and the antimicrobial peptides generated by proteolysis of the precursor forms are typically cationic and [alpha]-helical, a structure that facilitates their interaction and insertion into anionic bacterial cell walls and membranes, causing damage and promoting microbial death. Here, we found that mouse cathelicidin (Camp) expression was induced in bone marrow-derived macrophages by infection with Mycobacterium avium in a TLR2- and TNF-dependent manner. However, the endogenous production of the cathelin-related antimicrobial peptide (CRAMP) was not required for the bacteriostasis of M. avium either in primary cultures of macrophages or in vivo, as shown by the use of CRAMP-null mice. In contrast, the lack of Camp led to a transient improvement of M. avium growth control in the spleens of infected mice while at the same time causing an exacerbation of the inflammatory response to infection. Our data highlight the anti-inflammatory effects of CRAMP and suggests that virulent mycobacteria may possess strategies to escape its antimicrobial activity.Funded through project PTDC/BIA-BCM/112138/2009FCOMP-01-0124-FEDER014185

    The effect of the host's iron status on tuberculosis

    Get PDF
    Several lines of evidence have suggested that iron is critical for Mycobacterium tuberculosis growth in macrophages. Macrophage iron loading in patients with African iron overload increases the risk of tuberculosis (TB) and may worsen TB outcome. Likewise, macrophage iron loading may contribute to an increased predisposition toward TB in HIV infection. Human genetic disorders or variations may increase the risk of TB or worsen its outcome through macrophage iron loading, including the haptoglobin 2-2 phenotype, NRAMP1 polymorphisms (at least in Africans and Asians), and possibly ferroportin 1 mutations, but not HFE hemochromatosis. Thus, the host\u27s iron status may be an important yet underevaluated factor in TB prevention and therapy and in TB vaccine design. © 2007 by the Infectious Diseases Society of America. All rights reserved

    Heme catabolism by heme oxygenase-1 confers host resistance to Mycobacterium infection

    Get PDF
    Heme oxygenases (HO) catalyze the rate-limiting step of heme degradation. The cytoprotective action of the inducible HO-1 isoform, encoded by the Hmox1 gene, is required for host protection against systemic infections. Here we report that upregulation of HO-1 expression in macrophages (M) is strictly required for protection against mycobacterial infection in mice. HO-1-deficient (Hmox1(-/-)) mice are more susceptible to intravenous Mycobacterium avium infection, failing to mount a protective granulomatous response and developing higher pathogen loads, than infected wild-type (Hmox1(+/+)) controls. Furthermore, Hmox1(-/-) mice also develop higher pathogen loads and ultimately succumb when challenged with a low-dose aerosol infection with Mycobacterium tuberculosis. The protective effect of HO-1 acts independently of adaptive immunity, as revealed in M. avium-infected Hmox1(-/-) versus Hmox1(+/+) SCID mice lacking mature B and T cells. In the absence of HO-1, heme accumulation acts as a cytotoxic pro-oxidant in infected M, an effect mimicked by exogenous heme administration to M. avium-infected wild-type M in vitro or to mice in vivo. In conclusion, HO-1 prevents the cytotoxic effect of heme in M, contributing critically to host resistance to Mycobacterium infection.European Community 6th Framework grant: (LSH-2005-1.2.5-1), FCT fellowships: (SFRH/BD/29257/2006, SFRH/BPD/25436/2005), Instituto Gulbenkian de Ciência, Universidade do Minho, ICBAS

    The Warburg effect in mycobacterial granulomas is dependent on the recruitment and activation of macrophages by interferon-γ

    Get PDF
    Granulomas are the hallmark of mycobacterial disease. Here, we demonstrate that both the cell recruitment and the increased glucose consumption in granulomatous infiltrates during Mycobacterium avium infection are highly dependent on interferon-y (IFN-y). Mycobacterium avium-infected mice lacking IFN-y signalling failed to developed significant inflammatory infiltrations and lacked the characteristic uptake of the glucose analogue fluorine-18-fluorodeoxyglucose (FDG). To assess the role of macrophages in glucose uptake we infected mice with a selective impairment of IFN-y signalling in the macrophage lineage (MIIG mice). Although only a partial reduction of the granulomatous areas was observed in infected MIIG mice, the insensitivity of macrophages to IFN-y reduced the accumulation of FDG. In vivo, ex vivo and in vitro assays showed that macrophage activated by IFN-y displayed increased rates of glucose uptake and in vitro studies showed also that they had increased lactate production and increased expression of key glycolytic enzymes. Overall, our results show that the activation of macrophages by IFN-y is responsible for the Warburg effect observed in organs infected with M. avium.Funded by project ‘NORTE-07-0124-FEDER-000002-Host-Pathogen Interactions’ co-funded by Programa Operacional Regional do Norte (ON.2—O Novo Norte), under the Quadro de Referência Estratégico Nacional (QREN), through the Fundo Europeu de Desenvolvimento Regional (FEDER) and by Fundação para a Ciência e Tecnologia

    Potent immunogenicity and protective efficacy of a multi-pathogen vaccination targeting Ebola, Sudan, Marburg and Lassa viruse

    Get PDF
    Viral haemorrhagic fevers (VHF) pose a significant threat to human health. In recent years, VHF outbreaks caused by Ebola, Marburg and Lassa viruses have caused substantial morbidity and mortality in West and Central Africa. In 2022, an Ebola disease outbreak in Uganda caused by Sudan virus resulted in 164 cases with 55 deaths. In 2023, a Marburg disease outbreak was confirmed in Equatorial Guinea and Tanzania resulting in over 49 confirmed or suspected cases; 41 of which were fatal. There are no clearly defined correlates of protection against these VHF, impeding targeted vaccine development. Any vaccine developed should therefore induce strong and preferably long-lasting humoral and cellular immunity against these viruses. Ideally this immunity should also cross-protect against viral variants, which are known to circulate in animal reservoirs and cause human disease. We have utilized two viral vectored vaccine platforms, an adenovirus (ChAdOx1) and Modified Vaccinia Ankara (MVA), to develop a multi-pathogen vaccine regime against three filoviruses (Ebola virus, Sudan virus, Marburg virus) and an arenavirus (Lassa virus). These platform technologies have consistently demonstrated the capability to induce robust cellular and humoral antigen-specific immunity in humans, most recently in the rollout of the licensed ChAdOx1-nCoV19/AZD1222. Here, we show that our multi-pathogen vaccines elicit strong cellular and humoral immunity, induce a diverse range of chemokines and cytokines, and most importantly, confers protection after lethal Ebola virus, Sudan virus and Marburg virus challenges in a small animal model

    B Cells Regulate Neutrophilia during Mycobacterium tuberculosis Infection and BCG Vaccination by Modulating the Interleukin-17 Response

    Get PDF
    We have previously demonstrated that B cells can shape the immune response to Mycobacterium tuberculosis, including the level of neutrophil infiltration and granulomatous inflammation at the site of infection. The present study examined the mechanisms by which B cells regulate the host neutrophilic response upon exposure to mycobacteria and how neutrophilia may influence vaccine efficacy. To address these questions, a murine aerosol infection tuberculosis (TB) model and an intradermal (ID) ear BCG immunization mouse model, involving both the μMT strain and B cell-depleted C57BL/6 mice, were used. IL (interleukin)-17 neutralization and neutrophil depletion experiments using these systems provide evidence that B cells can regulate neutrophilia by modulating the IL-17 response during M. tuberculosis infection and BCG immunization. Exuberant neutrophilia at the site of immunization in B cell-deficient mice adversely affects dendritic cell (DC) migration to the draining lymph nodes and attenuates the development of the vaccine-induced Th1 response. The results suggest that B cells are required for the development of optimal protective anti-TB immunity upon BCG vaccination by regulating the IL-17/neutrophilic response. Administration of sera derived from M. tuberculosis-infected C57BL/6 wild-type mice reverses the lung neutrophilia phenotype in tuberculous μMT mice. Together, these observations provide insight into the mechanisms by which B cells and humoral immunity modulate vaccine-induced Th1 response and regulate neutrophila during M. tuberculosis infection and BCG immunization. © 2013 Kozakiewicz et al

    Nitric oxide inhibits the accumulation of CD4+CD44hiTbet+CD69lo T cells in mycobacterial infection

    Get PDF
    Animals lacking the inducible nitric oxide synthase gene (nos2-/-) are less susceptible to Mycobacterium avium strain 25291 and lack nitric oxide-mediated immunomodulation of CD4+ T cells. Here we show that the absence of nos2 results in increased accumulation of neutrophils and both CD4+ and CD8+ T cells within the M. avium containing granuloma. Examination of the T-cell phenotype in M. avium infected mice demonstrated that CD4+CD44hi effector T cells expressing the Th1 transcriptional regulator T-bet (T-bet+) were specifically reduced by the presence of nitric oxide. Importantly, the T-bet+ effector population could be separated into CD69hi and CD69lo populations, with the CD69lo population only able to accumulate during chronic infection within infected nos2-/- mice. Transcriptomic comparison between CD4+CD44hiCD69hi and CD4+CD44hiCD69lo populations revealed that CD4+CD44hiCD69lo cells had higher expression of the integrin itgb1/itga4 (VLA-4, CD49d/CD29). Inhibition of Nos2 activity allowed increased accumulation of the CD4+CD44hiT-bet+CD69lo population in WT mice as well as increased expression of VLA-4. These data support the hypothesis that effector T cells in mycobacterial granulomata are not a uniform effector population but exist in distinct subsets with differential susceptibility to the regulatory effects of nitric oxide

    Insomnia is a frequent finding in adults with Asperger syndrome

    Get PDF
    BACKGROUND: Asperger syndrome (AS) is a neurodevelopmental disorder belonging to autism spectrum disorders with prevalence rate of 0,35% in school-age children. It has been most extensively studied in childhood while there is scarcity of reports concerning adulthood of AS subjects despite the lifelong nature of this syndrome. In children with Asperger syndrome the initiation and continuity of sleep is disturbed because of the neuropsychiatric deficits inherent of AS. It is probable that sleep difficulties are present in adulthood as well. Our hypothesis was that adults with AS suffer from difficulty in initiating and maintaining sleep and nonrestorative sleep (insomnia). METHODS: 20 AS without medication were compared with 10 healthy controls devoid of neuropsychiatric anamnesis. Clinical examination, blood test battery and head MRI excluded confounding somatic illnesses. Structured psychiatric interview for axis-I and axis-II disorders were given to both groups as well as Beck Depression Inventory and Wechsler adult intelligence scale, revised version. Sleep quality was assessed with sleep questionnaire, sleep diary during 6 consecutive days and description of possible sleep problems by the participants own words was requested. RESULTS: compared with controls and with normative values of good sleep, AS adults had frequent insomnia. In sleep questionnaire 90% (18/20), in sleep diary 75% (15/20) and in free description 85% (17/20) displayed insomnia. There was a substantial psychiatric comorbidity with only 4 AS subject devoid of other axis-I or axis-II disorders besides AS. Also these persons displayed insomnia. It can be noted that the distribution of psychiatric diagnoses in AS subjects was virtually similar to that found among patient with chronic insomnia. CONCLUSIONS: the neuropsychiatric deficits inherent of AS predispose both to insomnia and to anxiety and mood disorders. Therefore a careful assessment of sleep quality should be an integral part of the treatment plan in these individuals. Conversely, when assessing adults with chronic insomnia the possibility of autism spectrum disorders as one of the potential causes of this condition should be kept in mind

    Acute effects of intracranial hypertension and ARDS on pulmonary and neuronal damage: a randomized experimental study in pigs

    Get PDF
    Abstract PURPOSE: To determine reciprocal and synergistic effects of acute intracranial hypertension and ARDS on neuronal and pulmonary damage and to define possible mechanisms. METHODS: Twenty-eight mechanically ventilated pigs were randomized to four groups of seven each: control; acute intracranial hypertension (AICH); acute respiratory distress syndrome (ARDS); acute respiratory distress syndrome in combination with acute intracranial hypertension (ARDS + AICH). AICH was induced with an intracranial balloon catheter and the inflation volume was adjusted to keep intracranial pressure (ICP) at 30-40 cmH2O. ARDS was induced by oleic acid infusion. Respiratory function, hemodynamics, extravascular lung water index (ELWI), lung and brain computed tomography (CT) scans, as well as inflammatory mediators, S100B, and neuronal serum enolase (NSE) were measured over a 4-h period. Lung and brain tissue were collected and examined at the end of the experiment. RESULTS: In both healthy and injured lungs, AICH caused increases in NSE and TNF-alpha plasma concentrations, extravascular lung water, and lung density in CT, the extent of poorly aerated (dystelectatic) and atelectatic lung regions, and an increase in the brain tissue water content. ARDS and AICH in combination induced damage in the hippocampus and decreased density in brain CT. CONCLUSIONS: AICH induces lung injury and also exacerbates pre-existing damage. Increased extravascular lung water is an early marker. ARDS has a detrimental effect on the brain and acts synergistically with intracranial hypertension to cause histological hippocampal damage
    corecore