8 research outputs found

    Genes and variants in hematopoiesis-related pathways are associated with gemcitabine/carboplatin-induced thrombocytopenia

    No full text
    Chemotherapy-induced myelosuppression, including thrombocytopenia, is a recurrent problem during cancer treatments that may require dose alterations or cessations that could affect the antitumor effect of the treatment. To identify genetic markers associated with treatment-induced thrombocytopenia, we whole-exome sequenced 215 non-small cell lung cancer patients homogeneously treated with gemcitabine/carboplatin. The decrease in platelets (defined as nadir/baseline) was used to assess treatment-induced thrombocytopenia. Association between germline genetic variants and thrombocytopenia was analyzed at single-nucleotide variant (SNV) (based on the optimal false discovery rate, the severity of predicted consequence, and effect), gene, and pathway levels. These analyses identified 130 SNVs/INDELs and 25 genes associated with thrombocytopenia (P-value &lt; 0.002). Twenty-three SNVs were validated in an independent genome-wide association study (GWAS). The top associations include rs34491125 in JMJD1C (P-value = 9.07 × 10−5), the validated variants rs10491684 in DOCK8 (P-value = 1.95 × 10−4), rs6118 in SERPINA5 (P-value = 5.83 × 10−4), and rs5877 in SERPINC1 (P-value = 1.07 × 10−3), and the genes CAPZA2 (P-value = 4.03 × 10−4) and SERPINC1 (P-value = 1.55 × 10−3). The SNVs in the top-scoring pathway “Factors involved in megakaryocyte development and platelet production” (P-value = 3.34 × 10−4) were used to construct weighted genetic risk score (wGRS) and logistic regression models that predict thrombocytopenia. The wGRS predict which patients are at high or low toxicity risk levels, for CTCAE (odds ratio (OR) = 22.35, P-value = 1.55 × 10−8), and decrease (OR = 66.82, P-value = 5.92 × 10−9). The logistic regression models predict CTCAE grades 3–4 (receiver operator characteristics (ROC) area under the curve (AUC) = 0.79), and large decrease (ROC AUC = 0.86). We identified and validated genetic variations within hematopoiesis-related pathways that provide a solid foundation for future studies using genetic markers for predicting chemotherapy-induced thrombocytopenia and personalizing treatments.Funding agencies:  Swedish Cancer SocietySwedish Cancer Society; Swedish Research CouncilSwedish Research Council; ALF grants Region ostergotland; Radiumhemmet; Marcus Borgstroms stiftelse; Spanish Ministry of Economy and Competitiveness [SAF2015-64850-R]; Science for Life </p

    PheoSeq: a targeted next-generation sequencing assay for pheochromocytoma and paraganglioma diagnostics

    Full text link
    Genetic diagnosis is recommended for all pheochromocytoma and paraganglioma (PPGL) cases, as driver mutations are identified in approximately 80% of the cases. As the list of related genes expands, genetic diagnosis becomes more time-consuming, and targeted next-generation sequencing (NGS) has emerged as a cost-effective tool. This study aimed to optimize targeted NGS in PPGL genetic diagnostics. A workflow based on two customized targeted NGS assays was validated to study the 18 main PPGL genes in germline and frozen tumor DNA, with one of them specifically directed toward formalin-fixed paraffin-embedded tissue. The series involved 453 unrelated PPGL patients, of whom 30 had known mutations and were used as controls. Partial screening using Sanger had been performed in 275 patients. NGS results were complemented with the study of gross deletions. NGS assay showed a sensitivity ≥99.4%, regardless of DNA source. We identified 45 variants of unknown significance and 89 pathogenic mutations, the latter being germline in 29 (7.2%) and somatic in 58 (31.7%) of the 183 tumors studied. In 37 patients previously studied by Sanger sequencing, the causal mutation could be identified. We demonstrated that both assays are an efficient and accurate alternative to conventional sequencing. Their application facilitates the study of minor PPGL genes, and enables genetic diagnoses in patients with incongruent or missing clinical data, who would otherwise be missed

    Targeted sequencing reveals low-frequency variants in EPHA genes as markers of paclitaxel-induced peripheral neuropathy.

    Get PDF
    PURPOSE: Neuropathy is the dose limiting toxicity of paclitaxel and a major cause for decreased quality of life. Genetic factors have been shown to contribute to paclitaxel neuropathy susceptibility; however, the major causes for inter-individual differences remain unexplained. In this study we identified genetic markers associated with paclitaxel-induced neuropathy through massive sequencing of candidate genes. EXPERIMENTAL DESIGN: We sequenced the coding region of 4 EPHA genes, 5 genes involved in paclitaxel pharmacokinetics and 30 Charcot-Marie-Tooth genes, in 228 cancer patients with no/low neuropathy or high grade neuropathy during paclitaxel treatment. An independent validation series included 202 paclitaxel-treated patients. Variation-/ gene-based analyses were used to compare variant frequencies among neuropathy groups and Cox regression models were used to analyze neuropathy evolution along treatment. RESULTS: Gene-based analysis identified EPHA6 as the gene most significantly associated with paclitaxel-induced neuropathy. Low frequency non-synonymous variants in EPHA6 were present exclusively in patients with high neuropathy and all affected the ligand binding domain. Accumulated dose analysis in the discovery series showed a significantly higher neuropathy risk for EPHA5/6/8 low-frequency non-synonymous variant carriers (HR=14.60, 95%CI=2.33-91.62, P=0.0042) and an independent cohort confirmed an increased neuropathy risk (HR=2.07, 95%CI=1.14-3.77, P=0.017). Combining the series gave an estimated 2.50-fold higher risk of neuropathy (95%CI=1.46-4.31; P=9.1x10(-4)). CONCLUSION: This first study sequencing EPHA genes revealed that low frequency variants in EPHA6, EPHA5 and EPHA8 contribute to the susceptibility to paclitaxel-induced neuropathy. Furthermore, EPHAs neuronal injury repair function suggests that these genes might constitute important neuropathy markers for many neurotoxic drugs.Funding agencies: Spanish Ministry of Economy and Competiveness [SAF2015-64850-R]; Severo Ochoa Excellence Programme [SEV-2011-0191]; Fundacion AECC; Swedish Cancer Society; Swedish Research Council; LiU Cancer</p

    Deep sequencing reveals microRNAs predictive of antiangiogenic drug response

    No full text
    The majority of metastatic renal cell carcinoma (RCC) patients are treated with tyrosine kinase inhibitors (TKI) in first-line treatment; however, a fraction are refractory to these antiangiogenic drugs. MicroRNAs (miRNAs) are regulatory molecules proven to be accurate biomarkers in cancer. Here, we identified miRNAs predictive of progressive disease under TKI treatment through deep sequencing of 74 metastatic clear cell RCC cases uniformly treated with these drugs. Twenty-nine miRNAs were differentially expressed in the tumors of patients who progressed under TKI therapy (P values from 6 × 10(-9) to 3 × 10(-3)). Among 6 miRNAs selected for validation in an independent series, the most relevant associations corresponded to miR-1307-3p, miR-155-5p, and miR-221-3p (P = 4.6 × 10(-3), 6.5 × 10(-3), and 3.4 × 10(-2), respectively). Furthermore, a 2 miRNA-based classifier discriminated individuals with progressive disease upon TKI treatment (AUC = 0.75, 95% CI, 0.64-0.85; P = 1.3 × 10(-4)) with better predictive value than clinicopathological risk factors commonly used. We also identified miRNAs significantly associated with progression-free survival and overall survival (P = 6.8 × 10(-8) and 7.8 × 10(-7) for top hits, respectively), and 7 overlapped with early progressive disease. In conclusion, this is the first miRNome comprehensive study, to our knowledge, that demonstrates a predictive value of miRNAs for TKI response and provides a new set of relevant markers that can help rationalize metastatic RCC treatment.status: publishe

    Deep sequencing reveals microRNAs predictive of antiangiogenic drug response

    No full text
    The majority of metastatic renal cell carcinoma (RCC) patients are treated with tyrosine kinase inhibitors (TKI) in first-line treatment; however, a fraction are refractory to these antiangiogenic drugs. MicroRNAs (miRNAs) are regulatory molecules proven to be accurate biomarkers in cancer. Here, we identified miRNAs predictive of progressive disease under TKI treatment through deep sequencing of 74 metastatic clear cell RCC cases uniformly treated with these drugs. Twenty-nine miRNAs were differentially expressed in the tumors of patients who progressed under TKI therapy (P values from 6 × 10(–9) to 3 × 10(–3)). Among 6 miRNAs selected for validation in an independent series, the most relevant associations corresponded to miR–1307-3p, miR–155-5p, and miR–221-3p (P = 4.6 × 10(–3), 6.5 × 10(–3), and 3.4 × 10(–2), respectively). Furthermore, a 2 miRNA–based classifier discriminated individuals with progressive disease upon TKI treatment (AUC = 0.75, 95% CI, 0.64–0.85; P = 1.3 × 10(–4)) with better predictive value than clinicopathological risk factors commonly used. We also identified miRNAs significantly associated with progression-free survival and overall survival (P = 6.8 × 10(–8) and 7.8 × 10(–7) for top hits, respectively), and 7 overlapped with early progressive disease. In conclusion, this is the first miRNome comprehensive study, to our knowledge, that demonstrates a predictive value of miRNAs for TKI response and provides a new set of relevant markers that can help rationalize metastatic RCC treatment

    PheoSeq : A Targeted Next-Generation Sequencing Assay for Pheochromocytoma and Paraganglioma Diagnostics

    No full text
    Genetic diagnosis is recommended for all pheochromocytoma and paraganglioma (PPGL) cases, as driver mutations are identified in approximately 80% of the cases. As the list of related genes expands, genetic diagnosis becomes more time-consuming, and targeted next-generation sequencing (NGS) has emerged as a cost-effective tool. This study aimed to optimize targeted NGS in PPGL genetic diagnostics. A workflow based on two customized targeted NGS assays was validated to study the 18 main PPGL genes in germline and frozen tumor DNA, with one of them specifically directed toward formalin-fixed paraffin-embedded tissue. The series involved 453 unrelated PPGL patients, of whom 30 had known mutations and were used as controls. Partial screening using Sanger had been performed in 275 patients. NGS results were complemented with the study of gross deletions. NGS assay showed a sensitivity ≥99.4%, regardless of DNA source. We identified 45 variants of unknown significance and 89 pathogenic mutations, the latter being germline in 29 (7.2%) and somatic in 58 (31.7%) of the 183 tumors studied. In 37 patients previously studied by Sanger sequencing, the causal mutation could be identified. We demonstrated that both assays are an efficient and accurate alternative to conventional sequencing. Their application facilitates the study of minor PPGL genes, and enables genetic diagnoses in patients with incongruent or missing clinical data, who would otherwise be missed

    PheoSeq

    No full text
    corecore