17 research outputs found

    Distinct tau prion strains propagate in cells and mice and define different tauopathies

    Get PDF
    Prion-like propagation of tau aggregation might underlie the stereotyped progression of neurodegenerative tauopathies. True prions stably maintain unique conformations (“strains”) in vivo that link structure to patterns of pathology. We now find that tau meets this criterion. Stably expressed tau repeat domain indefinitely propagates distinct amyloid conformations in a clonal fashion in culture. Reintroduction of tau from these lines into naive cells reestablishes identical clones. We produced two strains in vitro that induce distinct pathologies in vivo as determined by successive inoculations into three generations of transgenic mice. Immunopurified tau from these mice recreates the original strains in culture. We used the cell system to isolate tau strains from 29 patients with 5 different tauopathies, finding that different diseases are associated with different sets of strains. Tau thus demonstrates essential characteristics of a prion. This might explain the phenotypic diversity of tauopathies and could enable more effective diagnosis and therapy

    A relação entre orientador e orientando no processo de produção científica / The relationship between guiding and guiding in the scientific production process

    Get PDF
    O processo de desenvolvimento científico e tecnológico tem como elemento fundamental a orientação. Ao mesmo tempo em que a relação orientador/orientando oferece benefícios, de forma bilateral, sendo eles o treinamento/formação de investigadores/pesquisadores e a produção científica, também gera tensões e conflitos que impactam na produtividade e qualidade da pesquisa acadêmica. Objetivo: Analisar a relação entre orientador e orientando na produção científica durante o processo de orientação. Método: Trata-se de um estudo de revisão de literatura que utilizou artigos da base de dados da Scielo e do Portal Periódicos CAPES. As palavras chaves utilizadas na busca foram “orientador”, “orientando”, “relação”. Sendo encontrados nove artigos na base de dados da Scielo e 76 no Portal de Periódicos da CAPES. Utilizando-se, para este estudo, os artigos científicos revisados por pares, relacionados ao tema, publicados no período de 1995 a 2019. Resultados: A relação entre orientador e orientando constitui-se de uma via de mão dupla que requer disponibilidade, dedicação, responsabilidade e o cumprimento dos prazos estabelecidos por ambas as partes. Conclusão: O processo de orientação é imprescindível para produção do conhecimento, que pode ser afetada se a relação entre orientador e orientando não for adequada e proveitosa. Neste sentido, ressalta-se a necessidade de fomento a novas pesquisas sobre a temática

    Evaluation of biomolecular distributions in rat brain tissues by means of ToF-SIMS using a continuous beam of Ar clusters

    No full text
    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) provides detailed chemical structure information and high spatial resolutionimages. Therefore, ToF-SIMS is useful for studying biological phenomena such as ischemia. In this study, in order to evaluate cerebral microinfarction, the distribution of biomolecules generated by ischemia was measured with ToF-SIMS. ToF-SIMS data sets were analyzed by means of multivariate analysis for interpreting complex samples containing unknown information and to obtain biomolecular mapping indicated by fragment ions from the target biomolecules. Using conventional ToF-SIMS (primary ion source: Bi cluster ion), it is difficult to detect secondary ions beyond approximately 1000 u. Moreover, the intensity of secondary ions related to biomolecules is not always high enough for imaging because of low concentration even if the masses are lower than 1000 u. However, for the observation of biomolecular distributions in tissues, it is important to detect low amounts of biological molecules from a particular area of tissue. Rat braintissue samples were measured with ToF-SIMS (J105, Ionoptika, Ltd., Chandlers Ford, UK), using a continuous beam of Ar clusters as a primary ion source. ToF-SIMS with Ar clusters efficiently detects secondary ions related to biomolecules and larger molecules. Molecules detected by ToF-SIMS were examined by analyzing ToF-SIMS data using multivariate analysis. Microspheres (45 μm diameter) were injected into the rat unilateral internal carotid artery (MS rat) to cause cerebral microinfarction. The rat brain was sliced and then measured with ToF-SIMS. The brain samples of a normal rat and the MS rat were examined to find specific secondary ions related to important biomolecules, and then the difference between them was investigated. Finally, specific secondary ions were found around vessels incorporating microspheres in the MS rat. The results suggest that important biomolecules related to cerebral microinfarction can be detected by ToF-SIMS

    Peptide structural analysis using continuous Ar cluster and C60 ion beams

    No full text
    A novel application of time-of-flight secondary ion mass spectrometry (ToF-SIMS) with continuous Ar clusterbeams to peptide analysis was investigated. In order to evaluate peptide structures, it is necessary to detect fragment ions related to multiple neighbouring amino acid residues. It is, however, difficult to detect these using conventional ToF-SIMS primary ion beams such as Bi cluster beams. Recently, C60 and Ar cluster ion beams have been introduced to ToF-SIMS as primary ion beams and are expected to generatelarger secondary ions than conventional ones. In this study,two sets of model peptides have been studied: (des-Tyr)-Leuenkephalinand (des-Tyr)-Met-enkephalin (molecular weights are approximately 400 Da), and [Asn1 Val5]-angiotensin II and [Val5]-angiotensin I (molecular weights are approximately 1,000 Da) in order to evaluate the usefulness of the large cluster ion beams for peptide structural analysis. As a result, by using the Ar cluster beams, peptide molecular ions and large fragment ions, which are not easily detected using conventional ToF-SIMS primary ion beams such as Bi3+, are clearly detected. Since the large fragment ions indicating amino acid sequences of the peptides are detected by the large cluster beams, it is suggested that the Ar cluster and C60 ion beams are useful for peptide structural analysis

    Genome degeneration and adaptation in a nascent stage of symbiosis

    No full text
    Symbiotic associations between animals and microbes are ubiquitous in nature, with an estimated 15% of all insect species harboring intracellular bacterial symbionts. Most bacterial symbionts share many genomic features including small genomes, nucleotide composition bias, high coding density, and a paucity of mobile DNA, consistent with long-term host association. In this study, we focus on the early stages of genome degeneration in a recently derived insect-bacterial mutualistic intracellular association. We present the complete genome sequence and annotation of Sitophilus oryzae primary endosymbiont (SOPE). We also present the finished genome sequence and annotation of strain HS, a close free-living relative of SOPE and other insect symbionts of the Sodalis-allied clade, whose gene inventory is expected to closely resemble the putative ancestor of this group. Structural, functional, and evolutionary analyses indicate that SOPE has undergone extensive adaptation toward an insect-associated lifestyle in a very short time period. The genome of SOPE is large in size when compared with many ancient bacterial symbionts; however, almost half of the protein-coding genes in SOPE are pseudogenes. There is also evidence for relaxed selection on the remaining intact protein-coding genes. Comparative analyses of the whole-genome sequence of strain HS and SOPE highlight numerous genomic rearrangements, duplications, and deletions facilitated by a recent expansion of insertions sequence elements, some of which appear to have catalyzed adaptive changes. Functional metabolic predictions suggest that SOPE has lost the ability to synthesize several essential amino acids and vitamins. Analyses of the bacterial cell envelope and genes encoding secretion systems suggest that these structures and elements have become simplified in the transition to a mutualistic association
    corecore