8 research outputs found

    Two-loop Corrections to the B to pi Form Factor from QCD Sum Rules on the Light-Cone and |V(ub)|

    Full text link
    We calculate the leading-twist O(alphas^2 beta0) corrections to the B to pi transition form factor f+(0) in light-cone sum rules. We find that, as expected, there is a cancellation between the O(alphas^2 beta0) corrections to fB f+(0) and the large corresponding corrections to fB, calculated in QCD sum rules. This suggests the insensitivity of the form factors calculated in the light-cone sum rules approach to this source of radiative corrections. We further obtain an improved determination of the CKM matrix element |V(ub)|, using latest results from BaBar and Belle for f+(0)|V(ub)|.Comment: 18 pages, 3 figure

    B →Vℓ+ℓ− in the Standard Model from light-cone sum rules

    Get PDF
    We present Bq→ρB_q\to\rho, Bq→ωB_q\to\omega, Bq→K∗B_q\to K^*, Bs→K∗B_s\to K^* and Bs→ϕB_s\to \phi form factors from light-cone sum rules (LCSR) at O(αs)\mathcal{O}(\alpha_s) for twist-2 and 3 and O(αs0)\mathcal{O}(\alpha_s^0) for twist-4 with updated hadronic input parameters. Three asymptotic light-cone distribution amplitudes of twist-44 (and 55) are determined, necessary for the form factors to obey the equations of motion. It is argued that the latter constrain the uncertainty of tensor-to-vector form factor ratios thereby improving the prediction of zeros of helicity amplitudes of major importance for B→K∗ℓℓB\to K^*\ell\ell angular observables. We provide easy-to-use fits to the LCSR results, including the full error correlation matrix, in all modes at low q2q^2 as well as combined fits to LCSR and lattice results covering the entire kinematic range for Bq→K∗B_q\to K^*, Bs→K∗B_s\to K^* and Bs→ϕB_s\to \phi. The error correlation matrix avoids the problem of overestimating the uncertainty in phenomenological applications. Using the new form factors and recent computations of non-factorisable contributions we provide Standard Model predictions for B→K∗γB\to K^*\gamma as well as B→K∗ℓ+ℓ−B\to K^*\ell^+\ell^- and Bs→ϕΌ+Ό−B_s\to\phi\mu^+\mu^- at low dilepton invariant mass. Employing our B→(ρ,ω)B \to (\rho,\omega) form factor results we extract the CKM element ∣Vub∣|V_\mathrm{ub}| from the semileptonic decays B→(ρ,ω)â„“ÎœB\to(\rho,\omega) \ell\nu and find good agreement with other exclusive determinations.Comment: 64 pages, 7 figures, 15 tables. v3: Minor clarifications, numerics unchanged. Matches version published in JHE

    Uncovering Natural Supersymmetry via the interplay between the LHC and direct Dark Matter detection

    Get PDF
    We have explored Natural Supersymmetry (NSUSY) scenarios with low values of the ÎŒ parameter which are characterised by higgsino-like Dark Matter (DM) and compressed spectra for the lightest MSSM particles, χ10, χ20 and χ1±. This scenario could be probed via monojet signatures, but as the signal-to-background ratio (S/B) is low we demonstrate that the 8 TeV LHC cannot obtain limits on the DM mass beyond those of LEP2. On the other hand, we have found, for the 13 TeV run of the LHC, that by optimising kinematical cuts we can bring the S/B ratio up to the 5(3)% level which would allow the exclusion of the DM mass up to 200(250) GeV respectively, significantly extending LEP2 limits. Moreover, we have found that LUX/XENON1T and LHC do play very complementary roles in exploring the parameter space of NSUSY, as the LHC has the capability to access regions where DM is quasi-degenerate with other higgsinos, which are challenging for direct detection experiments

    Reinterpretation of LHC Results for New Physics: Status and recommendations after Run 2

    Get PDF
    We report on the status of efforts to improve the reinterpretation of searches and measurements at the LHC in terms of models for new physics, in the context of the LHC Reinterpretation Forum. We detail current experimental offerings in direct searches for new particles, measurements, technical implementations and Open Data, and provide a set of recommendations for further improving the presentation of LHC results in order to better enable reinterpretation in the future. We also provide a brief description of existing software reinterpretation frameworks and recent global analyses of new physics that make use of the current data

    Les Houches 2013: Physics at TeV Colliders: New Physics Working Group Report

    No full text
    Proceedings of the New Physics Working Group of the 2013 Les Houches Workshop, Physics at TeV Colliders, Les Houches 3-21 June 2013. 201 pagesInternational audienceWe present the activities of the "New Physics" working group for the "Physics at TeV Colliders" workshop (Les Houches, France, 3--21 June, 2013). Our report includes new computational tool developments, studies of the implications of the Higgs boson discovery on new physics, important signatures for searches for natural new physics at the LHC, new studies of flavour aspects of new physics, and assessments of the interplay between direct dark matter searches and the LHC

    Consistent on shell renormalisation of electroweakinos in the complex MSSM: LHC and LC predictions

    Get PDF
    We extend the formalism developed in ref. [53] for the renormalisation of the chargino-neutralino sector to the most general case of the MSSM with complex parameters. We show that products of imaginary parts arising from MSSM parameters and from absorptive parts of loop integrals can already contribute to predictions for physical observables at the one-loop level, and demonstrate that the consistent treatment of such contributions gives rise to non-trivial structure, either in the field renormalisation constants or the corrections associated with the external legs of the considered diagrams. We furthermore point out that the phases of the parameters in the chargino-neutralino sector do not need to be renormalised at the one-loop level, and demonstrate that the appropriate choice for the mass parameters used as input for the on-shell conditions depends both on the process and the region of MSSM parameter space under consideration. As an application, we compute the complete one-loop results in the MSSM with complex parameters for the process ha→χ˜+iχ˜−j (Higgs-propagator corrections have been incorporated up to the two-loop level), which may be of interest for SUSY Higgs searches at the LHC, and for chargino pair-production at an e + e − Linear Collider, e+e−→χ˜+iχ˜−j . We investigate the dependence of the theoretical predictions on the phases of the MSSM parameters, analysing in particular the numerical relevance of the absorptive parts of loop integrals

    Les Houches 2011: Physics at TeV Colliders New Physics Working Group Report

    No full text
    243 pages, report of the Les Houches 2011 New Physics GroupWe present the activities of the "New Physics" working group for the "Physics at TeV Colliders" workshop (Les Houches, France, 30 May-17 June, 2011). Our report includes new agreements on formats for interfaces between computational tools, new tool developments, important signatures for searches at the LHC, recommendations for presentation of LHC search results, as well as additional phenomenological studies
    corecore